public interface StochasticGradientOptimiser
extends com.oracle.labs.mlrg.olcut.config.Configurable, com.oracle.labs.mlrg.olcut.provenance.Provenancable<com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance>
Order of use:
Deviating from this order will cause unexpected behaviour.Modifier and Type | Method and Description |
---|---|
StochasticGradientOptimiser |
copy()
Copies a gradient optimiser with it's configuration.
|
default void |
finalise()
Finalises the gradient optimisation, setting the parameters to their correct values.
|
default void |
initialise(Parameters parameters)
Initialises the gradient optimiser.
|
void |
reset()
Resets the optimiser so it's ready to optimise a new
Parameters . |
Tensor[] |
step(Tensor[] updates,
double weight)
Take a
Tensor array of gradients and transform them
according to the current weight and learning rates. |
default void initialise(Parameters parameters)
Configures any learning rate parameters.
parameters
- The parameters to optimise.Tensor[] step(Tensor[] updates, double weight)
Tensor
array of gradients and transform them
according to the current weight and learning rates.
Can return the same Tensor
array or a new one.
updates
- An array of gradients.weight
- The weight for the current gradients.Tensor
array of gradients.default void finalise()
ParameterAveraging
amongst others.void reset()
Parameters
.StochasticGradientOptimiser copy()
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.