Uses of Class
org.tribuo.sequence.SequenceModel
Packages that use SequenceModel
Package
Description
Evaluation classes for multi-class classification.
Provides infrastructure for
SequenceModels which
emit Labels at each step of the sequence.Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any
Label based classification model.Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
This package contains the infrastructure classes for building evaluation metrics.
Provides an interface for working with Tensorflow sequence models, using Tribuo's
SequenceModel abstraction.Provides core classes for working with sequences of
Examples.-
Uses of SequenceModel in org.tribuo.classification.evaluation
Constructors in org.tribuo.classification.evaluation with parameters of type SequenceModelModifierConstructorDescriptionContext(SequenceModel<Label> model, List<Prediction<Label>> predictions) -
Uses of SequenceModel in org.tribuo.classification.sequence
Subclasses of SequenceModel in org.tribuo.classification.sequenceModifier and TypeClassDescriptionclassA Sequence model which can provide confidence predictions for subsequence predictions.Methods in org.tribuo.classification.sequence with parameters of type SequenceModelModifier and TypeMethodDescriptionprotected LabelMetric.ContextLabelSequenceEvaluator.createContext(SequenceModel<Label> model, List<List<Prediction<Label>>> predictions) protected Set<LabelMetric> LabelSequenceEvaluator.createMetrics(SequenceModel<Label> model) -
Uses of SequenceModel in org.tribuo.classification.sequence.viterbi
Subclasses of SequenceModel in org.tribuo.classification.sequence.viterbiMethods in org.tribuo.classification.sequence.viterbi that return SequenceModelModifier and TypeMethodDescriptionViterbiTrainer.train(SequenceDataset<Label> dataset, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) The viterbi train method is unique because it delegates to a regularModeltrain method, but before it does, it adds features derived from preceding labels. -
Uses of SequenceModel in org.tribuo.classification.sgd.crf
Subclasses of SequenceModel in org.tribuo.classification.sgd.crfModifier and TypeClassDescriptionclassAn inference time model for a CRF trained using SGD. -
Uses of SequenceModel in org.tribuo.evaluation.metrics
Methods in org.tribuo.evaluation.metrics that return SequenceModelModifier and TypeMethodDescriptionMetricContext.getSequenceModel()Gets the SequenceModel used by this context.Constructors in org.tribuo.evaluation.metrics with parameters of type SequenceModelModifierConstructorDescriptionprotectedMetricContext(SequenceModel<T> model, List<Prediction<T>> predictions) -
Uses of SequenceModel in org.tribuo.interop.tensorflow.sequence
Subclasses of SequenceModel in org.tribuo.interop.tensorflow.sequenceModifier and TypeClassDescriptionclassTensorflowSequenceModel<T extends Output<T>>A Tensorflow model which implements SequenceModel, suitable for use in sequential prediction tasks.Methods in org.tribuo.interop.tensorflow.sequence that return SequenceModelModifier and TypeMethodDescriptionTensorflowSequenceTrainer.train(SequenceDataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) -
Uses of SequenceModel in org.tribuo.sequence
Methods in org.tribuo.sequence that return SequenceModelModifier and TypeMethodDescriptionHashingSequenceTrainer.train(SequenceDataset<T> sequenceExamples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) This clones theSequenceDataset, hashes each of the examples and rewrites their feature ids before passing it to the inner trainer.default SequenceModel<T> SequenceTrainer.train(SequenceDataset<T> examples) Trains a sequence prediction model using the examples in the given data set.SequenceTrainer.train(SequenceDataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a sequence prediction model using the examples in the given data set.Methods in org.tribuo.sequence with parameters of type SequenceModelModifier and TypeMethodDescriptionprotected abstract CAbstractSequenceEvaluator.createContext(SequenceModel<T> model, List<List<Prediction<T>>> predictions) Create the context needed for evaluation.AbstractSequenceEvaluator.createMetrics(SequenceModel<T> model) Creates the appropriate set of metrics for this model, by querying for it'sOutputInfo.final EAbstractSequenceEvaluator.evaluate(SequenceModel<T> model, List<List<Prediction<T>>> predictions, DataProvenance dataProvenance) Produces an evaluation for the supplied model and predictions by aggregating the appropriate statistics.final EAbstractSequenceEvaluator.evaluate(SequenceModel<T> model, SequenceDataset<T> dataset) Produces an evaluation for the supplied model and dataset, by callingpredict(org.tribuo.sequence.SequenceExample<T>)to create the predictions, then aggregating the appropriate statistics.final EAbstractSequenceEvaluator.evaluate(SequenceModel<T> model, SequenceDataSource<T> datasource) Produces an evaluation for the supplied model and datasource, by callingpredict(org.tribuo.sequence.SequenceExample<T>)to create the predictions, then aggregating the appropriate statistics.SequenceEvaluator.evaluate(SequenceModel<T> model, List<List<Prediction<T>>> predictions, DataProvenance dataProvenance) Evaluates the supplied model and predictions by aggregating the appropriate statistics.SequenceEvaluator.evaluate(SequenceModel<T> model, SequenceDataset<T> dataset) Evaluates the dataset using the supplied model, returning an immutable evaluation.SequenceEvaluator.evaluate(SequenceModel<T> model, SequenceDataSource<T> datasource) Evaluates the datasource using the supplied model, returning an immutable evaluation.Constructors in org.tribuo.sequence with parameters of type SequenceModelModifierConstructorDescriptionImmutableSequenceDataset(SequenceDataSource<T> dataSource, SequenceModel<T> model)