Package | Description |
---|---|
org.tribuo.classification.explanations.lime |
Provides an implementation of LIME (Locally Interpretable Model Explanations).
|
org.tribuo.classification.sgd |
Provides infrastructure for Stochastic Gradient Descent for classification problems.
|
org.tribuo.classification.sgd.crf |
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
|
org.tribuo.clustering.kmeans |
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
|
org.tribuo.common.tree |
Provides common functionality for building decision trees, irrespective
of the predicted
Output . |
org.tribuo.common.xgboost |
Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts. |
org.tribuo.interop |
This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
|
org.tribuo.interop.onnx |
This package contains a Tribuo wrapper around the ONNX Runtime.
|
org.tribuo.interop.tensorflow |
Provides an interface to Tensorflow, allowing the training of non-sequential models using any supported
Tribuo output type.
|
org.tribuo.math |
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of
math related utils.
|
org.tribuo.math.kernel |
Provides a
Kernel interface for Mercer kernels, along with implementations of standard kernels. |
org.tribuo.math.la |
Provides a linear algebra system used for numerical operations in Tribuo.
|
org.tribuo.math.util |
Provides math related util classes.
|
org.tribuo.regression.impl | |
org.tribuo.regression.sgd |
Provides infrastructure for Stochastic Gradient Descent based regression models.
|
org.tribuo.regression.slm |
Provides implementations of sparse linear regression using various forms of regularisation penalty.
|
Modifier and Type | Method and Description |
---|---|
static double |
LIMEBase.measureDistance(ImmutableFeatureMap fMap,
long numTrainingExamples,
SparseVector input,
SparseVector sample)
Measures the distance between an input point and a sampled point.
|
static Example<Label> |
LIMEBase.samplePoint(Random rng,
ImmutableFeatureMap fMap,
long numTrainingExamples,
SparseVector input)
Samples a single example from the supplied feature map and input vector.
|
Modifier and Type | Field and Description |
---|---|
SparseVector[] |
Util.ExampleArray.features |
SparseVector[][] |
Util.SequenceExampleArray.features |
Modifier and Type | Method and Description |
---|---|
static Util.SequenceExampleArray |
Util.shuffle(SparseVector[][] features,
int[][] labels,
double[] weights,
SplittableRandom rng)
Shuffles a sequence of features, labels and weights, returning a tuple of the shuffled values.
|
static Util.ExampleArray |
Util.shuffle(SparseVector[] features,
int[] labels,
double[] weights,
SplittableRandom rng)
Shuffles the features, labels and weights returning a tuple of the shuffled inputs.
|
static void |
Util.shuffleInPlace(SparseVector[][] features,
int[][] labels,
double[] weights,
SplittableRandom rng)
In place shuffle used for sequence problems.
|
static void |
Util.shuffleInPlace(SparseVector[] features,
int[] labels,
double[] weights,
int[] indices,
SplittableRandom rng)
In place shuffle of the features, labels, weights and indices.
|
static void |
Util.shuffleInPlace(SparseVector[] features,
int[] labels,
double[] weights,
SplittableRandom rng)
In place shuffle of the features, labels and weights.
|
Constructor and Description |
---|
ExampleArray(SparseVector[] features,
int[] labels,
double[] weights) |
SequenceExampleArray(SparseVector[][] features,
int[][] labels,
double[] weights) |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
CRFModel.convert(SequenceExample<T> example,
ImmutableFeatureMap featureIDMap)
Converts a
SequenceExample into an array of SparseVector s suitable for CRF prediction. |
Modifier and Type | Method and Description |
---|---|
ChainHelper.ChainCliqueValues |
CRFParameters.getCliqueValues(SparseVector[] features)
Generates the local scores and tuples them with the label - label transition weights.
|
DenseVector[] |
CRFParameters.getLocalScores(SparseVector[] features)
Generate the local scores (i.e., the linear classifier for each token).
|
int[] |
CRFParameters.predict(SparseVector[] features)
Generate a prediction using Viterbi.
|
List<Double> |
CRFParameters.predictConfidenceUsingCBP(SparseVector[] features,
List<Chunk> chunks)
This predicts per chunk confidence using the constrained forward backward algorithm from
Culotta and McCallum 2004.
|
DenseVector[] |
CRFParameters.predictMarginals(SparseVector[] features)
Generate a prediction using Belief Propagation.
|
com.oracle.labs.mlrg.olcut.util.Pair<Double,Tensor[]> |
CRFParameters.valueAndGradient(SparseVector[] features,
int[] labels)
Generates predictions based on the input features and labels, then scores those predictions to
produce a loss for the example and a gradient update.
|
Modifier and Type | Method and Description |
---|---|
protected void |
KMeansTrainer.mStep(ForkJoinPool fjp,
DenseVector[] centroidVectors,
Map<Integer,List<Integer>> clusterAssignments,
SparseVector[] data,
double[] weights) |
Modifier and Type | Method and Description |
---|---|
Node<T> |
SplitNode.getNextNode(SparseVector e)
Return the appropriate child node.
|
Node<T> |
Node.getNextNode(SparseVector example)
Returns the next node in the tree based on the supplied example, or null if it's a leaf.
|
Node<T> |
LeafNode.getNextNode(SparseVector e) |
Node<T> |
AbstractTrainingNode.getNextNode(SparseVector example) |
Modifier and Type | Method and Description |
---|---|
protected ml.dmlc.xgboost4j.java.DMatrix |
XGBoostExternalModel.convertFeatures(SparseVector input) |
protected static ml.dmlc.xgboost4j.java.DMatrix |
XGBoostTrainer.convertSparseVector(SparseVector vector)
Used when predicting with an externally trained XGBoost model.
|
Modifier and Type | Method and Description |
---|---|
protected ml.dmlc.xgboost4j.java.DMatrix |
XGBoostExternalModel.convertFeaturesList(List<SparseVector> input) |
protected static ml.dmlc.xgboost4j.java.DMatrix |
XGBoostTrainer.convertSparseVectors(List<SparseVector> vectors)
Used when predicting with an externally trained XGBoost model.
|
Modifier and Type | Method and Description |
---|---|
protected abstract U |
ExternalModel.convertFeatures(SparseVector input)
Converts from a SparseVector using the external model's indices into
the ingestion format for the external model.
|
Modifier and Type | Method and Description |
---|---|
protected abstract U |
ExternalModel.convertFeaturesList(List<SparseVector> input)
Converts from a list of SparseVector using the external model's indices
into the ingestion format for the external model.
|
Modifier and Type | Method and Description |
---|---|
protected ai.onnxruntime.OnnxTensor |
ONNXExternalModel.convertFeatures(SparseVector input) |
ai.onnxruntime.OnnxTensor |
ImageTransformer.transform(ai.onnxruntime.OrtEnvironment env,
SparseVector vector) |
ai.onnxruntime.OnnxTensor |
ExampleTransformer.transform(ai.onnxruntime.OrtEnvironment env,
SparseVector vector)
Converts a
SparseVector representing the features into a OnnxTensor . |
ai.onnxruntime.OnnxTensor |
DenseTransformer.transform(ai.onnxruntime.OrtEnvironment env,
SparseVector vector) |
Modifier and Type | Method and Description |
---|---|
protected ai.onnxruntime.OnnxTensor |
ONNXExternalModel.convertFeaturesList(List<SparseVector> input) |
ai.onnxruntime.OnnxTensor |
ImageTransformer.transform(ai.onnxruntime.OrtEnvironment env,
List<SparseVector> vectors) |
ai.onnxruntime.OnnxTensor |
ExampleTransformer.transform(ai.onnxruntime.OrtEnvironment env,
List<SparseVector> vectors)
Converts a list of
SparseVector s representing a batch of features into a OnnxTensor . |
ai.onnxruntime.OnnxTensor |
DenseTransformer.transform(ai.onnxruntime.OrtEnvironment env,
List<SparseVector> vectors) |
Modifier and Type | Method and Description |
---|---|
protected org.tensorflow.Tensor<?> |
TensorflowExternalModel.convertFeatures(SparseVector input) |
org.tensorflow.Tensor<?> |
ImageTransformer.transform(SparseVector vector) |
org.tensorflow.Tensor<?> |
ExampleTransformer.transform(SparseVector vector)
Converts a
SparseVector representing the features into a Tensor . |
org.tensorflow.Tensor<?> |
DenseTransformer.transform(SparseVector vector) |
Modifier and Type | Method and Description |
---|---|
protected org.tensorflow.Tensor<?> |
TensorflowExternalModel.convertFeaturesList(List<SparseVector> input) |
org.tensorflow.Tensor<?> |
ImageTransformer.transform(List<SparseVector> vectors) |
org.tensorflow.Tensor<?> |
ExampleTransformer.transform(List<SparseVector> vectors)
Converts a list of
SparseVector s representing a batch of features into a Tensor . |
org.tensorflow.Tensor<?> |
DenseTransformer.transform(List<SparseVector> vectors) |
Modifier and Type | Method and Description |
---|---|
Tensor[] |
LinearParameters.gradients(com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> score,
SparseVector features)
Generate the gradients for a particular feature vector given
the loss and the per output gradients.
|
SGDVector |
LinearParameters.predict(SparseVector example)
Generates an unnormalised prediction by leftMultiply'ing the weights with the incoming features.
|
Modifier and Type | Method and Description |
---|---|
double |
Sigmoid.similarity(SparseVector a,
SparseVector b) |
double |
RBF.similarity(SparseVector a,
SparseVector b) |
double |
Polynomial.similarity(SparseVector a,
SparseVector b) |
double |
Linear.similarity(SparseVector a,
SparseVector b) |
double |
Kernel.similarity(SparseVector first,
SparseVector second)
Calculates the similarity between two
SparseVector s. |
Modifier and Type | Method and Description |
---|---|
SparseVector |
SparseVector.copy() |
static <T extends Output<T>> |
SparseVector.createSparseVector(Example<T> example,
ImmutableFeatureMap featureInfo,
boolean addBias)
Builds a
SparseVector from an Example . |
static SparseVector |
SparseVector.createSparseVector(int dimension,
int[] indices,
double[] values)
Defensively copies the input, and checks that the indices are sorted.
|
static SparseVector |
SparseVector.createSparseVector(int dimension,
Map<Integer,Double> indexMap)
Builds a SparseVector from a map.
|
SparseVector |
DenseSparseMatrix.getRow(int i) |
SparseVector |
SparseVector.scale(double coefficient) |
SparseVector |
DenseVector.sparsify()
Generates a
SparseVector representation from this dense vector, removing all values
with absolute value below VectorTuple.DELTA . |
SparseVector |
DenseVector.sparsify(double tolerance)
Generates a
SparseVector representation from this dense vector, removing all values
with absolute value below the supplied tolerance. |
static <T extends Output<T>> |
SparseVector.transpose(Dataset<T> dataset)
Converts a dataset of row-major examples into an array of column-major
sparse vectors.
|
static <T extends Output<T>> |
SparseVector.transpose(Dataset<T> dataset,
ImmutableFeatureMap fMap)
Converts a dataset of row-major examples into an array of column-major
sparse vectors.
|
static SparseVector[] |
SparseVector.transpose(SparseVector[] input)
Transposes an array of sparse vectors from row-major to column-major or
vice versa.
|
Modifier and Type | Method and Description |
---|---|
static DenseSparseMatrix |
DenseSparseMatrix.createFromSparseVectors(SparseVector[] values)
Defensively copies the values.
|
int[] |
SparseVector.difference(SparseVector other)
Generates an array of the indices that are active in this vector
but are not present in
other . |
int[] |
SparseVector.intersection(SparseVector other)
Generates an array of the indices that are active in both this
vector and
other |
static SparseVector[] |
SparseVector.transpose(SparseVector[] input)
Transposes an array of sparse vectors from row-major to column-major or
vice versa.
|
Constructor and Description |
---|
DenseSparseMatrix(List<SparseVector> values) |
Modifier and Type | Method and Description |
---|---|
static SparseVector |
HeapMerger.merge(List<SparseVector> vectors,
int dimension,
int[] indicesBuffer,
double[] valuesBuffer)
Merges a list of sparse vectors into a single sparse vector, summing the values.
|
SparseVector |
Merger.merge(SparseVector[] inputs)
Merges an array of SparseVector into a single SparseVector.
|
SparseVector |
MatrixHeapMerger.merge(SparseVector[] inputs) |
SparseVector |
HeapMerger.merge(SparseVector[] inputs) |
Modifier and Type | Method and Description |
---|---|
SparseVector |
Merger.merge(SparseVector[] inputs)
Merges an array of SparseVector into a single SparseVector.
|
SparseVector |
MatrixHeapMerger.merge(SparseVector[] inputs) |
SparseVector |
HeapMerger.merge(SparseVector[] inputs) |
Modifier and Type | Method and Description |
---|---|
static SparseVector |
HeapMerger.merge(List<SparseVector> vectors,
int dimension,
int[] indicesBuffer,
double[] valuesBuffer)
Merges a list of sparse vectors into a single sparse vector, summing the values.
|
Modifier and Type | Method and Description |
---|---|
protected SparseVector |
SkeletalIndependentRegressionSparseModel.createFeatures(Example<Regressor> example)
Creates the feature vector.
|
protected SparseVector |
SkeletalIndependentRegressionModel.createFeatures(Example<Regressor> example)
Creates the feature vector.
|
Modifier and Type | Method and Description |
---|---|
protected abstract Regressor.DimensionTuple |
SkeletalIndependentRegressionSparseModel.scoreDimension(int dimensionIdx,
SparseVector features)
Makes a prediction for a single dimension.
|
protected abstract Regressor.DimensionTuple |
SkeletalIndependentRegressionModel.scoreDimension(int dimensionIdx,
SparseVector features)
Makes a prediction for a single dimension.
|
protected abstract T |
SkeletalIndependentRegressionTrainer.trainDimension(double[] outputs,
SparseVector[] features,
float[] weights,
SplittableRandom rng)
Trains a single dimension of the possibly multiple dimensions.
|
protected abstract T |
SkeletalIndependentRegressionSparseTrainer.trainDimension(double[] outputs,
SparseVector[] features,
float[] weights,
SplittableRandom rng)
Trains a single dimension of the possibly multiple dimensions.
|
Modifier and Type | Method and Description |
---|---|
static void |
Util.shuffleInPlace(SparseVector[] features,
DenseVector[] regressors,
double[] weights,
int[] indices,
SplittableRandom rng)
In place shuffle of the features, labels and weights.
|
static void |
Util.shuffleInPlace(SparseVector[] features,
DenseVector[] regressors,
double[] weights,
SplittableRandom rng)
In place shuffle of the features, labels and weights.
|
Modifier and Type | Method and Description |
---|---|
protected SparseVector |
SparseLinearModel.createFeatures(Example<Regressor> example)
Creates the feature vector.
|
Modifier and Type | Method and Description |
---|---|
Map<String,SparseVector> |
SparseLinearModel.getWeights()
Gets a copy of the model parameters.
|
Modifier and Type | Method and Description |
---|---|
protected Regressor.DimensionTuple |
SparseLinearModel.scoreDimension(int dimensionIdx,
SparseVector features) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.