Package | Description |
---|---|
org.tribuo.clustering |
Provides classes and infrastructure for working with clustering problems.
|
org.tribuo.clustering.evaluation |
Evaluation classes for clustering.
|
org.tribuo.clustering.example |
Provides a clustering data generator used for testing implementations.
|
org.tribuo.clustering.kmeans |
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
|
Modifier and Type | Field and Description |
---|---|
static ClusterID |
ClusteringFactory.UNASSIGNED_CLUSTER_ID |
Modifier and Type | Method and Description |
---|---|
ClusterID |
ClusterID.copy() |
<V> ClusterID |
ClusteringFactory.generateOutput(V label)
Generates a ClusterID by calling toString on the input, then calling Integer.parseInt.
|
ClusterID |
ImmutableClusteringInfo.getOutput(int id) |
ClusterID |
ClusteringFactory.getUnknownOutput() |
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<ClusterID> |
ClusteringFactory.constructInfoForExternalModel(Map<ClusterID,Integer> mapping)
Unlike the other info types, clustering directly uses the integer IDs as the stored value,
so this mapping discards the cluster IDs and just uses the supplied integers.
|
ImmutableOutputInfo<ClusterID> |
ClusteringInfo.generateImmutableOutputInfo() |
MutableOutputInfo<ClusterID> |
ClusteringFactory.generateInfo() |
MutableOutputInfo<ClusterID> |
ClusteringInfo.generateMutableOutputInfo() |
Set<ClusterID> |
ImmutableClusteringInfo.getDomain() |
Set<ClusterID> |
ClusteringInfo.getDomain() |
Evaluator<ClusterID,ClusteringEvaluation> |
ClusteringFactory.getEvaluator() |
Iterator<com.oracle.labs.mlrg.olcut.util.Pair<Integer,ClusterID>> |
ImmutableClusteringInfo.iterator() |
Modifier and Type | Method and Description |
---|---|
boolean |
ClusterID.fullEquals(ClusterID o) |
int |
ImmutableClusteringInfo.getID(ClusterID output) |
void |
MutableClusteringInfo.observe(ClusterID output) |
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<ClusterID> |
ClusteringFactory.constructInfoForExternalModel(Map<ClusterID,Integer> mapping)
Unlike the other info types, clustering directly uses the integer IDs as the stored value,
so this mapping discards the cluster IDs and just uses the supplied integers.
|
Modifier and Type | Method and Description |
---|---|
BiFunction<MetricTarget<ClusterID>,org.tribuo.clustering.evaluation.ClusteringMetric.Context,Double> |
ClusteringMetrics.getImpl() |
MetricTarget<ClusterID> |
ClusteringMetric.getTarget() |
Modifier and Type | Method and Description |
---|---|
org.tribuo.clustering.evaluation.ClusteringMetric.Context |
ClusteringMetric.createContext(Model<ClusterID> model,
List<Prediction<ClusterID>> predictions) |
org.tribuo.clustering.evaluation.ClusteringMetric.Context |
ClusteringMetric.createContext(Model<ClusterID> model,
List<Prediction<ClusterID>> predictions) |
protected org.tribuo.clustering.evaluation.ClusteringMetric.Context |
ClusteringEvaluator.createContext(Model<ClusterID> model,
List<Prediction<ClusterID>> predictions) |
protected org.tribuo.clustering.evaluation.ClusteringMetric.Context |
ClusteringEvaluator.createContext(Model<ClusterID> model,
List<Prediction<ClusterID>> predictions) |
protected ClusteringEvaluation |
ClusteringEvaluator.createEvaluation(org.tribuo.clustering.evaluation.ClusteringMetric.Context context,
Map<MetricID<ClusterID>,Double> results,
EvaluationProvenance provenance) |
protected Set<ClusteringMetric> |
ClusteringEvaluator.createMetrics(Model<ClusterID> model) |
ClusteringMetric |
ClusteringMetrics.forTarget(MetricTarget<ClusterID> tgt) |
Constructor and Description |
---|
ClusteringMetric(MetricTarget<ClusterID> target,
String name,
BiFunction<MetricTarget<ClusterID>,org.tribuo.clustering.evaluation.ClusteringMetric.Context,Double> impl) |
ClusteringMetric(MetricTarget<ClusterID> target,
String name,
BiFunction<MetricTarget<ClusterID>,org.tribuo.clustering.evaluation.ClusteringMetric.Context,Double> impl) |
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}, and there are 4 clusters,
{0,1,2,3}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}, and there are 4 clusters,
{0,1,2,3}.
|
static Example<ClusterID> |
ClusteringDataGenerator.emptyExample()
Generates an example with no features.
|
static Dataset<ClusterID> |
ClusteringDataGenerator.gaussianClusters(long size,
long seed)
Generates a dataset drawn from a mixture of 5 2d gaussians.
|
static Example<ClusterID> |
ClusteringDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<ClusterID>> |
KMeansModel.getExcuse(Example<ClusterID> example) |
Prediction<ClusterID> |
KMeansModel.predict(Example<ClusterID> example) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<ClusterID>> |
KMeansModel.getExcuse(Example<ClusterID> example) |
protected static DenseVector[] |
KMeansTrainer.initialiseCentroids(int centroids,
Dataset<ClusterID> examples,
ImmutableFeatureMap featureMap,
SplittableRandom rng)
Initialisation method called at the start of each train call.
|
Prediction<ClusterID> |
KMeansModel.predict(Example<ClusterID> example) |
KMeansModel |
KMeansTrainer.train(Dataset<ClusterID> dataset) |
KMeansModel |
KMeansTrainer.train(Dataset<ClusterID> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.