Uses of Class
org.tribuo.clustering.ClusterID
Packages that use ClusterID
Package
Description
Provides classes and infrastructure for working with clustering problems.
Evaluation classes for clustering.
Provides a clustering data generator used for testing implementations.
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
-
Uses of ClusterID in org.tribuo.clustering
Classes in org.tribuo.clustering that implement interfaces with type arguments of type ClusterIDModifier and TypeClassDescriptionclass
A clustering id.final class
A factory for making ClusterID related classes.class
The base class for a ClusterID OutputInfo.class
AnImmutableOutputInfo
object for ClusterIDs.class
A mutableClusteringInfo
.Fields in org.tribuo.clustering declared as ClusterIDMethods in org.tribuo.clustering that return ClusterIDModifier and TypeMethodDescriptionClusterID.copy()
<V> ClusterID
ClusteringFactory.generateOutput
(V label) Generates a ClusterID by calling toString on the input, then calling Integer.parseInt.ImmutableClusteringInfo.getOutput
(int id) ClusteringFactory.getUnknownOutput()
Methods in org.tribuo.clustering that return types with arguments of type ClusterIDModifier and TypeMethodDescriptionClusteringFactory.constructInfoForExternalModel
(Map<ClusterID, Integer> mapping) Unlike the other info types, clustering directly uses the integer IDs as the stored value, so this mapping discards the cluster IDs and just uses the supplied integers.ClusteringInfo.generateImmutableOutputInfo()
ClusteringFactory.generateInfo()
ClusteringInfo.generateMutableOutputInfo()
ClusteringInfo.getDomain()
ImmutableClusteringInfo.getDomain()
ClusteringFactory.getEvaluator()
ImmutableClusteringInfo.iterator()
Methods in org.tribuo.clustering with parameters of type ClusterIDMethod parameters in org.tribuo.clustering with type arguments of type ClusterIDModifier and TypeMethodDescriptionClusteringFactory.constructInfoForExternalModel
(Map<ClusterID, Integer> mapping) Unlike the other info types, clustering directly uses the integer IDs as the stored value, so this mapping discards the cluster IDs and just uses the supplied integers. -
Uses of ClusterID in org.tribuo.clustering.evaluation
Subclasses with type arguments of type ClusterID in org.tribuo.clustering.evaluationModifier and TypeClassDescriptionclass
Subinterfaces with type arguments of type ClusterID in org.tribuo.clustering.evaluationClasses in org.tribuo.clustering.evaluation that implement interfaces with type arguments of type ClusterIDModifier and TypeClassDescriptionclass
A metric for evaluating clustering problems.Methods in org.tribuo.clustering.evaluation that return types with arguments of type ClusterIDModifier and TypeMethodDescriptionBiFunction
<MetricTarget<ClusterID>, org.tribuo.clustering.evaluation.ClusteringMetric.Context, Double> ClusteringMetrics.getImpl()
ClusteringMetric.getTarget()
Method parameters in org.tribuo.clustering.evaluation with type arguments of type ClusterIDModifier and TypeMethodDescriptionprotected org.tribuo.clustering.evaluation.ClusteringMetric.Context
ClusteringEvaluator.createContext
(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) protected org.tribuo.clustering.evaluation.ClusteringMetric.Context
ClusteringEvaluator.createContext
(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) org.tribuo.clustering.evaluation.ClusteringMetric.Context
ClusteringMetric.createContext
(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) org.tribuo.clustering.evaluation.ClusteringMetric.Context
ClusteringMetric.createContext
(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) protected ClusteringEvaluation
ClusteringEvaluator.createEvaluation
(org.tribuo.clustering.evaluation.ClusteringMetric.Context context, Map<MetricID<ClusterID>, Double> results, EvaluationProvenance provenance) protected Set
<ClusteringMetric> ClusteringEvaluator.createMetrics
(Model<ClusterID> model) ClusteringMetrics.forTarget
(MetricTarget<ClusterID> tgt) Constructor parameters in org.tribuo.clustering.evaluation with type arguments of type ClusterIDModifierConstructorDescriptionClusteringMetric
(MetricTarget<ClusterID> target, String name, BiFunction<MetricTarget<ClusterID>, org.tribuo.clustering.evaluation.ClusteringMetric.Context, Double> impl) ClusteringMetric
(MetricTarget<ClusterID> target, String name, BiFunction<MetricTarget<ClusterID>, org.tribuo.clustering.evaluation.ClusteringMetric.Context, Double> impl) -
Uses of ClusterID in org.tribuo.clustering.example
Methods in org.tribuo.clustering.example that return types with arguments of type ClusterIDModifier and TypeMethodDescriptionClusteringDataGenerator.denseTrainTest()
ClusteringDataGenerator.denseTrainTest()
ClusteringDataGenerator.denseTrainTest
(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.ClusteringDataGenerator.denseTrainTest
(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.ClusteringDataGenerator.emptyExample()
Generates an example with no features.ClusteringDataGenerator.gaussianClusters
(long size, long seed) Generates a dataset drawn from a mixture of 5 2d gaussians.ClusteringDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.ClusteringDataGenerator.sparseTrainTest()
ClusteringDataGenerator.sparseTrainTest()
ClusteringDataGenerator.sparseTrainTest
(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.ClusteringDataGenerator.sparseTrainTest
(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data. -
Uses of ClusterID in org.tribuo.clustering.kmeans
Subclasses with type arguments of type ClusterID in org.tribuo.clustering.kmeansModifier and TypeClassDescriptionclass
A K-Means model with a selectable distance function.Classes in org.tribuo.clustering.kmeans that implement interfaces with type arguments of type ClusterIDModifier and TypeClassDescriptionclass
A K-Means trainer, which generates a K-means clustering of the supplied data.Methods in org.tribuo.clustering.kmeans that return types with arguments of type ClusterIDModifier and TypeMethodDescriptionMethod parameters in org.tribuo.clustering.kmeans with type arguments of type ClusterIDModifier and TypeMethodDescriptionprotected static DenseVector[]
KMeansTrainer.initialiseCentroids
(int centroids, Dataset<ClusterID> examples, ImmutableFeatureMap featureMap, SplittableRandom rng) Initialisation method called at the start of each train call.KMeansTrainer.train
(Dataset<ClusterID> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)