Uses of Package
org.tribuo.provenance
Package
Description
Provides the core interfaces and classes for using Tribuo.
Provides classes and infrastructure for anomaly detection problems.
Evaluation classes for anomaly detection.
Provides anomaly data generators used for demos and testing implementations.
Provides an interface to LibLinear-java for anomaly detection problems.
Provides an interface to LibSVM for anomaly detection problems.
Provides classes and infrastructure for multiclass classification problems.
Provides simple baseline multiclass classifiers.
Provides implementations of decision trees for classification problems.
Provides majority vote ensemble combiners for classification
along with an implementation of multiclass Adaboost.
Evaluation classes for multi-class classification.
Provides a multiclass data generator used for testing implementations, along with several synthetic data generators
for 2d binary classification problems to be used in demos or tutorials.
Information theoretic feature selection algorithms.
Provides an interface to LibLinear-java for classification problems.
Provides an interface to LibSVM for classification problems.
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
Provides infrastructure for
SequenceModel
s which
emit Label
s at each step of the sequence.Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any
Label
based classification model.Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides an implementation of a classification factorization machine using Stochastic Gradient Descent.
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
Provides an interface to XGBoost for classification problems.
Provides classes and infrastructure for working with clustering problems.
Evaluation classes for clustering.
Provides clustering data generators used for demos and testing implementations.
Provides an implementation of HDBSCAN*.
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
Provides base classes for using liblinear from Tribuo.
The base interface to LibSVM.
Provides a K-Nearest Neighbours implementation which works across
all Tribuo
Output
types.Provides the base classes for models trained with stochastic gradient descent.
Provides common functionality for building decision trees, irrespective
of the predicted
Output
.Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts.Provides classes which can load columnar data (using a
RowProcessor
)
from a CSV (or other character delimited format) file.Provides classes which can load columnar data (using a
RowProcessor
)
from a SQL source.Provides implementations of text data processors.
Provides utility datasets which subsample or otherwise
transform the wrapped dataset.
Simple data sources for ingesting or aggregating data.
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
Evaluation base classes, along with code for train/test splits and cross validation.
Provides the base interface and implementations of the
Model
hashing
which obscures the feature names stored in a model.Provides implementations of base classes and interfaces from
org.tribuo
.This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed
in Oracle Cloud Infrastructure Data Science.
This package contains a Tribuo wrapper around ONNX Runtime.
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
Provides an interface for working with TensorFlow sequence models, using Tribuo's
SequenceModel
abstraction.Provides interop with JSON formatted data, along with tools for interacting with JSON provenance objects.
Provides classes and infrastructure for working with multi-label classification problems.
Provides implementations of binary relevance based multi-label classification
algorithms.
Provides a multi-label ensemble combiner that performs a (possibly
weighted) majority vote among each label independently, along with an
implementation of classifier chain ensembles.
Evaluation classes for multi-label classification using
MultiLabel
.Provides a multi-label data generator for testing implementations and a
configurable data source suitable for demos and tests.
Provides an implementation of a multi-label classification factorization machine model using Stochastic Gradient Descent.
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
Provides Tribuo specific infrastructure for the
Provenance
system which
tracks models and datasets.Provides internal implementations for empty provenance classes and TrainerProvenance.
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
Provides simple baseline regression predictors.
Evaluation classes for single or multi-dimensional regression.
Provides some example regression data generators for testing implementations.
Provides an interface to liblinear for regression problems.
Provides an interface to LibSVM for regression problems.
Provides an implementation of decision trees for regression problems.
Provides an implementation of factorization machines for regression using Stochastic Gradient Descent.
Provides an implementation of linear regression using Stochastic Gradient Descent.
Provides implementations of sparse linear regression using various forms of regularisation penalty.
Provides an interface to XGBoost for regression problems.
Reproducibility utility based on Tribuo's provenance objects.
Provides core classes for working with sequences of
Example
s.Provides infrastructure for applying transformations to a
Dataset
.-
ClassDescriptionTag interface for data sources provenances.Base class for dataset provenance.Contains provenance information for an instance of a
SelectedFeatureSet
.Contains provenance information for an instance of aModel
. -
-
-
ClassDescriptionA tag interface for configurable data source provenance.Tag interface for data sources provenances.Data source provenance.
-
-
-
-
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
-
-
-
ClassDescriptionA tag interface for configurable data source provenance.Tag interface for data sources provenances.Data source provenance.
-
-
-
-
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
ClassDescriptionProvenance for evaluations.Contains provenance information for an instance of a
Model
. -
-
-
-
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
-
-
-
-
ClassDescriptionA tag interface for configurable data source provenance.Tag interface for data sources provenances.Data source provenance.
-
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
ClassDescriptionContains provenance information for an instance of a
Model
.The skeleton of a TrainerProvenance that extracts the configured parameters.A tag interface for trainer provenances. -
ClassDescriptionContains provenance information for an instance of a
Model
.The skeleton of a TrainerProvenance that extracts the configured parameters.A tag interface for trainer provenances. -
ClassDescriptionA tag interface for configurable data source provenance.Tag interface for data sources provenances.Data source provenance.
-
ClassDescriptionA tag interface for configurable data source provenance.Tag interface for data sources provenances.Data source provenance.
-
ClassDescriptionA tag interface for configurable data source provenance.Tag interface for data sources provenances.Data source provenance.
-
ClassDescriptionA tag interface for configurable data source provenance.Tag interface for data sources provenances.Data source provenance.
-
ClassDescriptionTag interface for data sources provenances.Base class for dataset provenance.
-
ClassDescriptionTag interface for data sources provenances.Data source provenance.
-
ClassDescriptionModel provenance for ensemble models.Contains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
ClassDescriptionTag interface for data sources provenances.Data source provenance.Provenance for evaluations.
-
-
ClassDescriptionTag interface for data sources provenances.Contains provenance information for an instance of a
Model
. -
ClassDescriptionTag interface for data sources provenances.Base class for dataset provenance.Contains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
-
-
ClassDescriptionContains provenance information for an instance of a
Model
.The skeleton of a TrainerProvenance that extracts the configured parameters.A tag interface for trainer provenances. -
ClassDescriptionThe skeleton of a TrainerProvenance that extracts the configured parameters.A tag interface for trainer provenances.
-
ClassDescriptionA tag interface for configurable data source provenance.Tag interface for data sources provenances.Data source provenance.
-
-
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
-
-
ClassDescriptionA tag interface for configurable data source provenance.Tag interface for data sources provenances.Data source provenance.
-
-
-
ClassDescriptionTag interface for data sources provenances.Base class for dataset provenance.Data source provenance.A tag interface for feature selection algorithms.Contains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
ClassDescriptionTag interface for data sources provenances.Base class for dataset provenance.Data source provenance.A tag interface for feature selection algorithms.The skeleton of a TrainerProvenance that extracts the configured parameters.A tag interface for trainer provenances.
-
-
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
-
ClassDescriptionA tag interface for configurable data source provenance.Tag interface for data sources provenances.Data source provenance.
-
-
-
-
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
-
-
ClassDescriptionContains provenance information for an instance of a
Model
.A tag interface for trainer provenances. -
-
-
ClassDescriptionTag interface for data sources provenances.Base class for dataset provenance.Provenance for evaluations.Contains provenance information for an instance of a
Model
.The skeleton of a TrainerProvenance that extracts the configured parameters.A tag interface for trainer provenances. -
ClassDescriptionBase class for dataset provenance.Contains provenance information for an instance of a
Model
.A tag interface for trainer provenances.