Package | Description |
---|---|
org.tribuo.classification.sequence.viterbi |
Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any
Label based classification model. |
org.tribuo.classification.sgd.crf |
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
|
org.tribuo.interop.tensorflow.sequence |
Provides an interface for working with Tensorflow sequence models, using Tribuo's
SequenceModel abstraction. |
org.tribuo.provenance |
Provides Tribuo specific infrastructure for the
Provenance system which
tracks models and datasets. |
org.tribuo.sequence |
Provides core classes for working with sequences of
Example s. |
Modifier and Type | Method and Description |
---|---|
List<List<Prediction<Label>>> |
ViterbiModel.predict(SequenceDataset<Label> examples) |
SequenceModel<Label> |
ViterbiTrainer.train(SequenceDataset<Label> dataset,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
The viterbi train method is unique because it delegates to a regular
Model train method, but before it does, it adds features derived
from preceding labels. |
Modifier and Type | Method and Description |
---|---|
CRFModel |
CRFTrainer.train(SequenceDataset<Label> sequenceExamples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
protected void |
TensorflowSequenceTrainer.preTrainingHook(org.tensorflow.Session session,
SequenceDataset<T> examples) |
SequenceModel<T> |
TensorflowSequenceTrainer.train(SequenceDataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Constructor and Description |
---|
DatasetProvenance(DataProvenance sourceProvenance,
com.oracle.labs.mlrg.olcut.provenance.ListProvenance<com.oracle.labs.mlrg.olcut.provenance.ObjectProvenance> transformationProvenance,
SequenceDataset<T> dataset) |
Modifier and Type | Class and Description |
---|---|
class |
ImmutableSequenceDataset<T extends Output<T>>
This is a
SequenceDataset which has an ImmutableFeatureMap to store the feature information. |
class |
MinimumCardinalitySequenceDataset<T extends Output<T>>
This class creates a pruned dataset in which low frequency features that
occur less than the provided minimum cardinality have been removed.
|
class |
MutableSequenceDataset<T extends Output<T>>
A MutableSequenceDataset is a
SequenceDataset with a MutableFeatureMap which grows over time. |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset)
Creates an immutable deep copy of the supplied dataset.
|
static <T extends Output<T>> |
ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
|
static <T extends Output<T>> |
ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
Merger merger)
Creates an immutable deep copy of the supplied dataset.
|
E |
SequenceEvaluator.evaluate(SequenceModel<T> model,
SequenceDataset<T> dataset)
Evaluates the dataset using the supplied model, returning an immutable evaluation.
|
E |
AbstractSequenceEvaluator.evaluate(SequenceModel<T> model,
SequenceDataset<T> dataset)
Produces an evaluation for the supplied model and dataset, by calling
SequenceModel.predict(org.tribuo.sequence.SequenceExample<T>)
to create the predictions, then aggregating the appropriate statistics. |
List<List<Prediction<T>>> |
SequenceModel.predict(SequenceDataset<T> examples)
Uses the model to predict the labels for multiple examples contained in
a data set.
|
default SequenceModel<T> |
SequenceTrainer.train(SequenceDataset<T> examples)
Trains a sequence prediction model using the examples in the given data set.
|
SequenceModel<T> |
SequenceTrainer.train(SequenceDataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
Trains a sequence prediction model using the examples in the given data set.
|
SequenceModel<T> |
HashingSequenceTrainer.train(SequenceDataset<T> sequenceExamples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance)
This clones the
SequenceDataset , hashes each of the examples
and rewrites their feature ids before passing it to the inner trainer. |
Constructor and Description |
---|
MinimumCardinalitySequenceDataset(SequenceDataset<T> sequenceDataset,
int minCardinality) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.