Uses of Class
org.tribuo.SparseModel
Package
Description
Provides the core interfaces and classes for using Tribuo.
Provides an implementation of LIME (Locally Interpretable Model Explanations).
Provides common functionality for building decision trees, irrespective
of the predicted
Output
.Provides an implementation of decision trees for regression problems.
Provides implementations of sparse linear regression using various forms of regularisation penalty.
-
Uses of SparseModel in org.tribuo
Modifier and TypeMethodDescriptionSparseModel.copy()
default SparseModel<T>
Trains a sparse predictive model using the examples in the given data set.SparseTrainer.train
(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a sparse predictive model using the examples in the given data set.default SparseModel<T>
SparseTrainer.train
(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a predictive model using the examples in the given data set. -
Uses of SparseModel in org.tribuo.classification.explanations.lime
Modifier and TypeMethodDescriptionLIMEExplanation.getModel()
protected SparseModel<Regressor>
Trains the explanation model using the supplied sampled data and the input example.ModifierConstructorDescriptionLIMEExplanation
(SparseModel<Regressor> model, Prediction<Label> prediction, RegressionEvaluation evaluation) Constructs a LIME explanation. -
Uses of SparseModel in org.tribuo.common.tree
-
Uses of SparseModel in org.tribuo.regression.impl
Modifier and TypeClassDescriptionclass
ASparseModel
which wraps n independent regression models, where n is the size of the MultipleRegressor domain. -
Uses of SparseModel in org.tribuo.regression.rtree
Modifier and TypeClassDescriptionfinal class
-
Uses of SparseModel in org.tribuo.regression.slm
Modifier and TypeClassDescriptionclass
The inference time version of a sparse linear regression model.Modifier and TypeMethodDescriptionElasticNetCDTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) ElasticNetCDTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount)