Package org.tribuo.regression.evaluation
Interface RegressionEvaluation
- All Superinterfaces:
Evaluation<Regressor>
,com.oracle.labs.mlrg.olcut.provenance.Provenancable<EvaluationProvenance>
Defines methods that calculate regression performance.
-
Method Summary
Modifier and TypeMethodDescriptiondouble
The average explained variance across all dimensions.double
The average Mean Absolute Error across all dimensions.double
The average R2 across all dimensions.double
The average RMSE across all dimensions.Calculatest the explained variance for all dimensions.double
explainedVariance
(Regressor variable) Calculates the explained variance of the ground truth using the predictions for the supplied dimension.mae()
Calculates the Mean Absolute Error for all dimensions.double
Calculates the Mean Absolute Error for that dimension.r2()
Calculates R2 for all dimensions.double
Calculates R2 for the supplied dimension.rmse()
Calculates the RMSE for all dimensions.double
Calculates the Root Mean Squared Error (i.e., the square root of the average squared errors across all data points) for the supplied dimension.Methods inherited from interface org.tribuo.evaluation.Evaluation
asMap, get, getPredictions
Methods inherited from interface com.oracle.labs.mlrg.olcut.provenance.Provenancable
getProvenance
-
Method Details
-
averageMAE
double averageMAE()The average Mean Absolute Error across all dimensions.- Returns:
- The average Mean Absolute Error.
-
mae
Calculates the Mean Absolute Error for that dimension.- Parameters:
variable
- The regression dimension to use.- Returns:
- The Mean Absolute Error.
-
mae
Calculates the Mean Absolute Error for all dimensions.- Returns:
- The Mean Absolute Error.
-
averageR2
double averageR2()The average R2 across all dimensions.- Returns:
- The average R2.
-
r2
Calculates R2 for the supplied dimension.- Parameters:
variable
- The regression dimension to use.- Returns:
- The R2.
-
r2
Calculates R2 for all dimensions.- Returns:
- The R2.
-
averageRMSE
double averageRMSE()The average RMSE across all dimensions.- Returns:
- The average RMSE.
-
rmse
Calculates the Root Mean Squared Error (i.e., the square root of the average squared errors across all data points) for the supplied dimension.- Parameters:
variable
- The regression dimension to use.- Returns:
- The RMSE.
-
rmse
Calculates the RMSE for all dimensions.- Returns:
- The RMSE.
-
averagedExplainedVariance
double averagedExplainedVariance()The average explained variance across all dimensions.- Returns:
- The average explained variance.
-
explainedVariance
Calculates the explained variance of the ground truth using the predictions for the supplied dimension.- Parameters:
variable
- The regression dimension to use.- Returns:
- The explained variance.
-
explainedVariance
Calculatest the explained variance for all dimensions.- Returns:
- The explained variance.
-