-
OnnxMl.StringStringEntryProto.PARSER
OnnxMl.StringStringEntryProto.Builder.build()
Data can be stored inside the protobuf file using type-specific fields or raw_data.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
This field specifies the bindings from the outputs of "initialization" to
some initializers in "ModelProto.graph.initializer" and
the "algorithm.initializer" in the same TrainingInfoProto.
This field specifies the bindings from the outputs of "initialization" to
some initializers in "ModelProto.graph.initializer" and
the "algorithm.initializer" in the same TrainingInfoProto.
This field specifies the bindings from the outputs of "initialization" to
some initializers in "ModelProto.graph.initializer" and
the "algorithm.initializer" in the same TrainingInfoProto.
Named metadata values; keys should be distinct.
Named metadata values; keys should be distinct.
Named metadata values; keys should be distinct.
<key, value> pairs to annotate tensor specified by <tensor_name> above.
<key, value> pairs to annotate tensor specified by <tensor_name> above.
<key, value> pairs to annotate tensor specified by <tensor_name> above.
Gradient-based training is usually an iterative procedure.
Gradient-based training is usually an iterative procedure.
Gradient-based training is usually an iterative procedure.
OnnxMl.StringStringEntryProto.parseFrom(byte[] data)
OnnxMl.StringStringEntryProto.parseFrom(byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
OnnxMl.StringStringEntryProto.parseFrom(com.google.protobuf.ByteString data)
OnnxMl.StringStringEntryProto.parseFrom(com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
OnnxMl.StringStringEntryProto.parseFrom(com.google.protobuf.CodedInputStream input)
OnnxMl.StringStringEntryProto.parseFrom(com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
OnnxMl.StringStringEntryProto.parseFrom(InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
OnnxMl.StringStringEntryProto.parseFrom(ByteBuffer data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Data can be stored inside the protobuf file using type-specific fields or raw_data.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
This field specifies the bindings from the outputs of "initialization" to
some initializers in "ModelProto.graph.initializer" and
the "algorithm.initializer" in the same TrainingInfoProto.
This field specifies the bindings from the outputs of "initialization" to
some initializers in "ModelProto.graph.initializer" and
the "algorithm.initializer" in the same TrainingInfoProto.
This field specifies the bindings from the outputs of "initialization" to
some initializers in "ModelProto.graph.initializer" and
the "algorithm.initializer" in the same TrainingInfoProto.
Named metadata values; keys should be distinct.
Named metadata values; keys should be distinct.
Named metadata values; keys should be distinct.
<key, value> pairs to annotate tensor specified by <tensor_name> above.
<key, value> pairs to annotate tensor specified by <tensor_name> above.
<key, value> pairs to annotate tensor specified by <tensor_name> above.
Gradient-based training is usually an iterative procedure.
Gradient-based training is usually an iterative procedure.
Gradient-based training is usually an iterative procedure.
OnnxMl.StringStringEntryProto.parser()
Data can be stored inside the protobuf file using type-specific fields or raw_data.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
This field specifies the bindings from the outputs of "initialization" to
some initializers in "ModelProto.graph.initializer" and
the "algorithm.initializer" in the same TrainingInfoProto.
This field specifies the bindings from the outputs of "initialization" to
some initializers in "ModelProto.graph.initializer" and
the "algorithm.initializer" in the same TrainingInfoProto.
Named metadata values; keys should be distinct.
Named metadata values; keys should be distinct.
<key, value> pairs to annotate tensor specified by <tensor_name> above.
<key, value> pairs to annotate tensor specified by <tensor_name> above.
Gradient-based training is usually an iterative procedure.
Gradient-based training is usually an iterative procedure.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
This field specifies the bindings from the outputs of "initialization" to
some initializers in "ModelProto.graph.initializer" and
the "algorithm.initializer" in the same TrainingInfoProto.
Named metadata values; keys should be distinct.
<key, value> pairs to annotate tensor specified by <tensor_name> above.
Gradient-based training is usually an iterative procedure.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
This field specifies the bindings from the outputs of "initialization" to
some initializers in "ModelProto.graph.initializer" and
the "algorithm.initializer" in the same TrainingInfoProto.
Named metadata values; keys should be distinct.
<key, value> pairs to annotate tensor specified by <tensor_name> above.
Gradient-based training is usually an iterative procedure.