Uses of Class
ai.onnx.proto.OnnxMl.StringStringEntryProto
Packages that use OnnxMl.StringStringEntryProto
-
Uses of OnnxMl.StringStringEntryProto in ai.onnx.proto
Fields in ai.onnx.proto with type parameters of type OnnxMl.StringStringEntryProtoModifier and TypeFieldDescriptionstatic final com.google.protobuf.Parser<OnnxMl.StringStringEntryProto>
OnnxMl.StringStringEntryProto.PARSER
Deprecated.Methods in ai.onnx.proto that return OnnxMl.StringStringEntryProtoModifier and TypeMethodDescriptionOnnxMl.StringStringEntryProto.Builder.build()
OnnxMl.StringStringEntryProto.Builder.buildPartial()
OnnxMl.StringStringEntryProto.getDefaultInstance()
OnnxMl.StringStringEntryProto.Builder.getDefaultInstanceForType()
OnnxMl.StringStringEntryProto.getDefaultInstanceForType()
OnnxMl.TensorProto.Builder.getExternalData
(int index) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TensorProto.getExternalData
(int index) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TensorProtoOrBuilder.getExternalData
(int index) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TrainingInfoProto.Builder.getInitializationBinding
(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.TrainingInfoProto.getInitializationBinding
(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.TrainingInfoProtoOrBuilder.getInitializationBinding
(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.ModelProto.Builder.getMetadataProps
(int index) Named metadata values; keys should be distinct.OnnxMl.ModelProto.getMetadataProps
(int index) Named metadata values; keys should be distinct.OnnxMl.ModelProtoOrBuilder.getMetadataProps
(int index) Named metadata values; keys should be distinct.OnnxMl.TensorAnnotation.Builder.getQuantParameterTensorNames
(int index) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TensorAnnotation.getQuantParameterTensorNames
(int index) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TensorAnnotationOrBuilder.getQuantParameterTensorNames
(int index) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TrainingInfoProto.Builder.getUpdateBinding
(int index) Gradient-based training is usually an iterative procedure.OnnxMl.TrainingInfoProto.getUpdateBinding
(int index) Gradient-based training is usually an iterative procedure.OnnxMl.TrainingInfoProtoOrBuilder.getUpdateBinding
(int index) Gradient-based training is usually an iterative procedure.OnnxMl.StringStringEntryProto.parseDelimitedFrom
(InputStream input) OnnxMl.StringStringEntryProto.parseDelimitedFrom
(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) OnnxMl.StringStringEntryProto.parseFrom
(byte[] data) OnnxMl.StringStringEntryProto.parseFrom
(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) OnnxMl.StringStringEntryProto.parseFrom
(com.google.protobuf.ByteString data) OnnxMl.StringStringEntryProto.parseFrom
(com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) OnnxMl.StringStringEntryProto.parseFrom
(com.google.protobuf.CodedInputStream input) OnnxMl.StringStringEntryProto.parseFrom
(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) OnnxMl.StringStringEntryProto.parseFrom
(InputStream input) OnnxMl.StringStringEntryProto.parseFrom
(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) OnnxMl.StringStringEntryProto.parseFrom
(ByteBuffer data) OnnxMl.StringStringEntryProto.parseFrom
(ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) Methods in ai.onnx.proto that return types with arguments of type OnnxMl.StringStringEntryProtoModifier and TypeMethodDescriptionOnnxMl.TensorProto.Builder.getExternalDataList()
Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TensorProto.getExternalDataList()
Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TensorProtoOrBuilder.getExternalDataList()
Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TrainingInfoProto.Builder.getInitializationBindingList()
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.TrainingInfoProto.getInitializationBindingList()
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.TrainingInfoProtoOrBuilder.getInitializationBindingList()
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.ModelProto.Builder.getMetadataPropsList()
Named metadata values; keys should be distinct.OnnxMl.ModelProto.getMetadataPropsList()
Named metadata values; keys should be distinct.OnnxMl.ModelProtoOrBuilder.getMetadataPropsList()
Named metadata values; keys should be distinct.com.google.protobuf.Parser<OnnxMl.StringStringEntryProto>
OnnxMl.StringStringEntryProto.getParserForType()
OnnxMl.TensorAnnotation.Builder.getQuantParameterTensorNamesList()
<key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TensorAnnotation.getQuantParameterTensorNamesList()
<key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TensorAnnotationOrBuilder.getQuantParameterTensorNamesList()
<key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TrainingInfoProto.Builder.getUpdateBindingList()
Gradient-based training is usually an iterative procedure.OnnxMl.TrainingInfoProto.getUpdateBindingList()
Gradient-based training is usually an iterative procedure.OnnxMl.TrainingInfoProtoOrBuilder.getUpdateBindingList()
Gradient-based training is usually an iterative procedure.static com.google.protobuf.Parser<OnnxMl.StringStringEntryProto>
OnnxMl.StringStringEntryProto.parser()
Methods in ai.onnx.proto with parameters of type OnnxMl.StringStringEntryProtoModifier and TypeMethodDescriptionOnnxMl.TensorProto.Builder.addExternalData
(int index, OnnxMl.StringStringEntryProto value) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TensorProto.Builder.addExternalData
(OnnxMl.StringStringEntryProto value) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TrainingInfoProto.Builder.addInitializationBinding
(int index, OnnxMl.StringStringEntryProto value) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.TrainingInfoProto.Builder.addInitializationBinding
(OnnxMl.StringStringEntryProto value) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.ModelProto.Builder.addMetadataProps
(int index, OnnxMl.StringStringEntryProto value) Named metadata values; keys should be distinct.OnnxMl.ModelProto.Builder.addMetadataProps
(OnnxMl.StringStringEntryProto value) Named metadata values; keys should be distinct.OnnxMl.TensorAnnotation.Builder.addQuantParameterTensorNames
(int index, OnnxMl.StringStringEntryProto value) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TensorAnnotation.Builder.addQuantParameterTensorNames
(OnnxMl.StringStringEntryProto value) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TrainingInfoProto.Builder.addUpdateBinding
(int index, OnnxMl.StringStringEntryProto value) Gradient-based training is usually an iterative procedure.OnnxMl.TrainingInfoProto.Builder.addUpdateBinding
(OnnxMl.StringStringEntryProto value) Gradient-based training is usually an iterative procedure.OnnxMl.StringStringEntryProto.Builder.mergeFrom
(OnnxMl.StringStringEntryProto other) OnnxMl.StringStringEntryProto.newBuilder
(OnnxMl.StringStringEntryProto prototype) OnnxMl.TensorProto.Builder.setExternalData
(int index, OnnxMl.StringStringEntryProto value) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TrainingInfoProto.Builder.setInitializationBinding
(int index, OnnxMl.StringStringEntryProto value) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.ModelProto.Builder.setMetadataProps
(int index, OnnxMl.StringStringEntryProto value) Named metadata values; keys should be distinct.OnnxMl.TensorAnnotation.Builder.setQuantParameterTensorNames
(int index, OnnxMl.StringStringEntryProto value) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TrainingInfoProto.Builder.setUpdateBinding
(int index, OnnxMl.StringStringEntryProto value) Gradient-based training is usually an iterative procedure.Method parameters in ai.onnx.proto with type arguments of type OnnxMl.StringStringEntryProtoModifier and TypeMethodDescriptionOnnxMl.TensorProto.Builder.addAllExternalData
(Iterable<? extends OnnxMl.StringStringEntryProto> values) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TrainingInfoProto.Builder.addAllInitializationBinding
(Iterable<? extends OnnxMl.StringStringEntryProto> values) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.ModelProto.Builder.addAllMetadataProps
(Iterable<? extends OnnxMl.StringStringEntryProto> values) Named metadata values; keys should be distinct.OnnxMl.TensorAnnotation.Builder.addAllQuantParameterTensorNames
(Iterable<? extends OnnxMl.StringStringEntryProto> values) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TrainingInfoProto.Builder.addAllUpdateBinding
(Iterable<? extends OnnxMl.StringStringEntryProto> values) Gradient-based training is usually an iterative procedure.