Package | Description |
---|---|
org.tribuo.interop.tensorflow |
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
|
org.tribuo.multilabel |
Provides classes and infrastructure for working with multi-label classification problems.
|
org.tribuo.multilabel.baseline | |
org.tribuo.multilabel.evaluation |
Evaluation classes for multi-label classification using
MultiLabel . |
org.tribuo.multilabel.example |
Provides a multi-label data generator for testing implementations.
|
org.tribuo.multilabel.sgd.linear |
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
|
Modifier and Type | Method and Description |
---|---|
MultiLabel |
MultiLabelConverter.convertToOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
Modifier and Type | Method and Description |
---|---|
List<MultiLabel> |
MultiLabelConverter.convertToBatchOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
List<Prediction<MultiLabel>> |
MultiLabelConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo,
int[] numValidFeatures,
List<Example<MultiLabel>> examples) |
Prediction<MultiLabel> |
MultiLabelConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo,
int numValidFeatures,
Example<MultiLabel> example) |
Modifier and Type | Method and Description |
---|---|
org.tensorflow.Tensor |
MultiLabelConverter.convertToTensor(MultiLabel example,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
Modifier and Type | Method and Description |
---|---|
List<MultiLabel> |
MultiLabelConverter.convertToBatchOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
List<Prediction<MultiLabel>> |
MultiLabelConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo,
int[] numValidFeatures,
List<Example<MultiLabel>> examples) |
List<Prediction<MultiLabel>> |
MultiLabelConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo,
int[] numValidFeatures,
List<Example<MultiLabel>> examples) |
MultiLabel |
MultiLabelConverter.convertToOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
Prediction<MultiLabel> |
MultiLabelConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo,
int numValidFeatures,
Example<MultiLabel> example) |
Prediction<MultiLabel> |
MultiLabelConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo,
int numValidFeatures,
Example<MultiLabel> example) |
org.tensorflow.Tensor |
MultiLabelConverter.convertToTensor(List<Example<MultiLabel>> examples,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
org.tensorflow.Tensor |
MultiLabelConverter.convertToTensor(List<Example<MultiLabel>> examples,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
org.tensorflow.Tensor |
MultiLabelConverter.convertToTensor(MultiLabel example,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
Modifier and Type | Field and Description |
---|---|
static MultiLabel |
MultiLabelFactory.UNKNOWN_MULTILABEL |
Modifier and Type | Field and Description |
---|---|
protected Map<String,MultiLabel> |
MultiLabelInfo.labels |
Modifier and Type | Method and Description |
---|---|
MultiLabel |
MultiLabel.copy() |
static MultiLabel |
MultiLabel.createFromPairList(List<com.oracle.labs.mlrg.olcut.util.Pair<String,Boolean>> dimensions)
Creates a MultiLabel from a list of dimensions.
|
<V> MultiLabel |
MultiLabelFactory.generateOutput(V label)
Parses the MultiLabel value either by toStringing the input and calling
parseString(java.lang.String)
or if it's a Collection iterating over the elements calling toString on each element in turn and using
parseElement(java.lang.String) . |
MultiLabel |
ImmutableMultiLabelInfo.getOutput(int id) |
MultiLabel |
MultiLabelFactory.getUnknownOutput() |
static MultiLabel |
MultiLabel.parseString(String s)
Parses a string of the form:
dimension-name=output,...,dimension-name=output
where output must be readable by
Boolean.parseBoolean(String) . |
static MultiLabel |
MultiLabel.parseString(String s,
char splitChar)
Parses a string of the form:
|
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<MultiLabel> |
MultiLabelFactory.constructInfoForExternalModel(Map<MultiLabel,Integer> mapping) |
ImmutableOutputInfo<MultiLabel> |
MultiLabelInfo.generateImmutableOutputInfo() |
MutableOutputInfo<MultiLabel> |
MultiLabelFactory.generateInfo() |
MutableOutputInfo<MultiLabel> |
MultiLabelInfo.generateMutableOutputInfo() |
Set<MultiLabel> |
MultiLabelInfo.getDomain()
Returns a set of MultiLabel, where each has a single Label inside it.
|
Set<MultiLabel> |
ImmutableMultiLabelInfo.getDomain() |
Evaluator<MultiLabel,MultiLabelEvaluation> |
MultiLabelFactory.getEvaluator() |
Iterator<com.oracle.labs.mlrg.olcut.util.Pair<Integer,MultiLabel>> |
ImmutableMultiLabelInfo.iterator() |
Modifier and Type | Method and Description |
---|---|
boolean |
MultiLabel.fullEquals(MultiLabel o) |
int |
ImmutableMultiLabelInfo.getID(MultiLabel output) |
static int |
MultiLabel.intersectionSize(MultiLabel first,
MultiLabel second)
The number of labels present in both MultiLabels.
|
static double |
MultiLabel.jaccardScore(MultiLabel first,
MultiLabel second)
The Jaccard score/index between the two MultiLabels.
|
void |
MutableMultiLabelInfo.observe(MultiLabel output)
Throws IllegalStateException if the MultiLabel contains a Label which has a "," in it.
|
static int |
MultiLabel.unionSize(MultiLabel first,
MultiLabel second)
The number of unique labels across both MultiLabels.
|
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<MultiLabel> |
MultiLabelFactory.constructInfoForExternalModel(Map<MultiLabel,Integer> mapping) |
DenseVector |
MultiLabel.convertToDenseVector(ImmutableOutputInfo<MultiLabel> info)
Converts this MultiLabel into a DenseVector using the indices from the output info.
|
SparseVector |
MultiLabel.convertToSparseVector(ImmutableOutputInfo<MultiLabel> info)
Converts this MultiLabel into a SparseVector using the indices from the output info.
|
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<MultiLabel>> |
IndependentMultiLabelModel.getExcuse(Example<MultiLabel> example) |
Prediction<MultiLabel> |
IndependentMultiLabelModel.predict(Example<MultiLabel> example) |
Model<MultiLabel> |
IndependentMultiLabelTrainer.train(Dataset<MultiLabel> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<MultiLabel>> |
IndependentMultiLabelModel.getExcuse(Example<MultiLabel> example) |
Prediction<MultiLabel> |
IndependentMultiLabelModel.predict(Example<MultiLabel> example) |
Model<MultiLabel> |
IndependentMultiLabelTrainer.train(Dataset<MultiLabel> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
Map<MetricID<MultiLabel>,Double> |
MultiLabelEvaluationImpl.asMap() |
ConfusionMatrix<MultiLabel> |
MultiLabelEvaluationImpl.getConfusionMatrix() |
ImmutableOutputInfo<MultiLabel> |
MultiLabelConfusionMatrix.getDomain() |
BiFunction<MetricTarget<MultiLabel>,org.tribuo.multilabel.evaluation.MultiLabelMetric.Context,Double> |
MultiLabelMetrics.getImpl()
Get the implementation function for this metric.
|
List<Prediction<MultiLabel>> |
MultiLabelEvaluationImpl.getPredictions() |
MetricTarget<MultiLabel> |
MultiLabelMetric.getTarget() |
Modifier and Type | Method and Description |
---|---|
double |
MultiLabelEvaluationImpl.confusion(MultiLabel predicted,
MultiLabel truth) |
double |
MultiLabelConfusionMatrix.confusion(MultiLabel predicted,
MultiLabel truth) |
double |
MultiLabelEvaluationImpl.f1(MultiLabel label) |
double |
MultiLabelEvaluationImpl.fn(MultiLabel label) |
double |
MultiLabelConfusionMatrix.fn(MultiLabel cls) |
double |
MultiLabelEvaluationImpl.fp(MultiLabel label) |
double |
MultiLabelConfusionMatrix.fp(MultiLabel cls) |
double |
MultiLabelEvaluationImpl.precision(MultiLabel label) |
double |
MultiLabelEvaluationImpl.recall(MultiLabel label) |
double |
MultiLabelConfusionMatrix.support(MultiLabel cls) |
double |
MultiLabelEvaluationImpl.tn(MultiLabel label) |
double |
MultiLabelConfusionMatrix.tn(MultiLabel cls) |
double |
MultiLabelEvaluationImpl.tp(MultiLabel label) |
double |
MultiLabelConfusionMatrix.tp(MultiLabel cls) |
Modifier and Type | Method and Description |
---|---|
org.tribuo.multilabel.evaluation.MultiLabelMetric.Context |
MultiLabelMetric.createContext(Model<MultiLabel> model,
List<Prediction<MultiLabel>> predictions) |
org.tribuo.multilabel.evaluation.MultiLabelMetric.Context |
MultiLabelMetric.createContext(Model<MultiLabel> model,
List<Prediction<MultiLabel>> predictions) |
protected org.tribuo.multilabel.evaluation.MultiLabelMetric.Context |
MultiLabelEvaluator.createContext(Model<MultiLabel> model,
List<Prediction<MultiLabel>> predictions) |
protected org.tribuo.multilabel.evaluation.MultiLabelMetric.Context |
MultiLabelEvaluator.createContext(Model<MultiLabel> model,
List<Prediction<MultiLabel>> predictions) |
protected MultiLabelEvaluation |
MultiLabelEvaluator.createEvaluation(org.tribuo.multilabel.evaluation.MultiLabelMetric.Context context,
Map<MetricID<MultiLabel>,Double> results,
EvaluationProvenance provenance) |
protected Set<MultiLabelMetric> |
MultiLabelEvaluator.createMetrics(Model<MultiLabel> model) |
MultiLabelMetric |
MultiLabelMetrics.forTarget(MetricTarget<MultiLabel> tgt)
Get the metric for the supplied target.
|
double |
MultiLabelEvaluationImpl.get(MetricID<MultiLabel> key) |
static double |
MultiLabelMetrics.jaccardScore(List<Prediction<MultiLabel>> predictions)
The average Jaccard score across the predictions.
|
Constructor and Description |
---|
MultiLabelConfusionMatrix(Model<MultiLabel> model,
List<Prediction<MultiLabel>> predictions) |
MultiLabelConfusionMatrix(Model<MultiLabel> model,
List<Prediction<MultiLabel>> predictions) |
MultiLabelMetric(MetricTarget<MultiLabel> target,
String name,
BiFunction<MetricTarget<MultiLabel>,org.tribuo.multilabel.evaluation.MultiLabelMetric.Context,Double> impl) |
MultiLabelMetric(MetricTarget<MultiLabel> target,
String name,
BiFunction<MetricTarget<MultiLabel>,org.tribuo.multilabel.evaluation.MultiLabelMetric.Context,Double> impl) |
Modifier and Type | Method and Description |
---|---|
static Example<MultiLabel> |
MultiLabelDataGenerator.emptyExample()
Generates an example with no features.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<MultiLabel>,Dataset<MultiLabel>> |
MultiLabelDataGenerator.generateDataset() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<MultiLabel>,Dataset<MultiLabel>> |
MultiLabelDataGenerator.generateDataset() |
static Dataset<MultiLabel> |
MultiLabelDataGenerator.generateTestData() |
static Dataset<MultiLabel> |
MultiLabelDataGenerator.generateTrainData() |
static Example<MultiLabel> |
MultiLabelDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
Modifier and Type | Method and Description |
---|---|
Prediction<MultiLabel> |
LinearSGDModel.predict(Example<MultiLabel> example) |
Modifier and Type | Method and Description |
---|---|
protected SparseVector |
LinearSGDTrainer.getTarget(ImmutableOutputInfo<MultiLabel> outputInfo,
MultiLabel output) |
Modifier and Type | Method and Description |
---|---|
protected LinearSGDModel |
LinearSGDTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<MultiLabel> outputInfo,
LinearParameters parameters) |
protected SparseVector |
LinearSGDTrainer.getTarget(ImmutableOutputInfo<MultiLabel> outputInfo,
MultiLabel output) |
Prediction<MultiLabel> |
LinearSGDModel.predict(Example<MultiLabel> example) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.