Package | Description |
---|---|
org.tribuo.classification.dtree |
Provides implementations of decision trees for classification problems.
|
org.tribuo.classification.dtree.impl |
Provides internal implementation classes for classification decision trees.
|
org.tribuo.common.tree |
Provides common functionality for building decision trees, irrespective
of the predicted
Output . |
org.tribuo.regression.rtree |
Provides an implementation of decision trees for regression problems.
|
org.tribuo.regression.rtree.impl |
Provides internal implementation classes for the regression trees.
|
Modifier and Type | Method and Description |
---|---|
protected AbstractTrainingNode<Label> |
CARTClassificationTrainer.mkTrainingNode(Dataset<Label> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
Modifier and Type | Class and Description |
---|---|
class |
ClassifierTrainingNode
A decision tree node used at training time.
|
Modifier and Type | Method and Description |
---|---|
List<AbstractTrainingNode<Label>> |
ClassifierTrainingNode.buildRandomTree(int[] featureIDs,
SplittableRandom rng)
Builds a CART tree with randomly chosen split points.
|
List<AbstractTrainingNode<Label>> |
ClassifierTrainingNode.buildTree(int[] featureIDs,
SplittableRandom rng,
boolean useRandomSplitPoints)
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
|
Modifier and Type | Method and Description |
---|---|
protected abstract AbstractTrainingNode<T> |
AbstractCARTTrainer.mkTrainingNode(Dataset<T> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
Modifier and Type | Method and Description |
---|---|
abstract List<AbstractTrainingNode<T>> |
AbstractTrainingNode.buildTree(int[] featureIDs,
SplittableRandom rng,
boolean useRandomSplitPoints)
Builds next level of a tree.
|
Modifier and Type | Method and Description |
---|---|
protected AbstractTrainingNode<Regressor> |
CARTRegressionTrainer.mkTrainingNode(Dataset<Regressor> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
protected AbstractTrainingNode<Regressor> |
CARTJointRegressionTrainer.mkTrainingNode(Dataset<Regressor> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
Modifier and Type | Class and Description |
---|---|
class |
JointRegressorTrainingNode
A decision tree node used at training time.
|
class |
RegressorTrainingNode
A decision tree node used at training time.
|
Modifier and Type | Method and Description |
---|---|
List<AbstractTrainingNode<Regressor>> |
RegressorTrainingNode.buildTree(int[] featureIDs,
SplittableRandom rng,
boolean useRandomSplitPoints)
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
|
List<AbstractTrainingNode<Regressor>> |
JointRegressorTrainingNode.buildTree(int[] featureIDs,
SplittableRandom rng,
boolean useRandomSplitPoints)
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
|
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.