Package | Description |
---|---|
org.tribuo.regression |
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
|
org.tribuo.regression.impl | |
org.tribuo.regression.slm |
Provides implementations of sparse linear regression using various forms of regularisation penalty.
|
Modifier and Type | Method and Description |
---|---|
Regressor.DimensionTuple |
Regressor.DimensionTuple.copy() |
Modifier and Type | Method and Description |
---|---|
Optional<Regressor.DimensionTuple> |
Regressor.getDimension(String name)
Returns a dimension tuple for the requested dimension, or optional empty if
it's not valid.
|
Optional<Regressor.DimensionTuple> |
Regressor.DimensionTuple.getDimension(String name) |
Iterator<Regressor.DimensionTuple> |
Regressor.iterator() |
Iterator<Regressor.DimensionTuple> |
Regressor.DimensionTuple.iterator() |
Constructor and Description |
---|
Regressor(Regressor.DimensionTuple[] dimensions)
Constructs a regressor from the supplied dimension tuples.
|
Modifier and Type | Method and Description |
---|---|
protected abstract Regressor.DimensionTuple |
SkeletalIndependentRegressionSparseModel.scoreDimension(int dimensionIdx,
SparseVector features)
Makes a prediction for a single dimension.
|
protected abstract Regressor.DimensionTuple |
SkeletalIndependentRegressionModel.scoreDimension(int dimensionIdx,
SparseVector features)
Makes a prediction for a single dimension.
|
Modifier and Type | Method and Description |
---|---|
protected Regressor.DimensionTuple |
SparseLinearModel.scoreDimension(int dimensionIdx,
SparseVector features) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.