Uses of Package
org.tribuo.protos

Packages that use org.tribuo.protos
Package
Description
Provides the core interfaces and classes for using Tribuo.
Provides classes and infrastructure for anomaly detection problems.
Provides an interface to LibLinear-java for anomaly detection problems.
Provides an interface to LibSVM for anomaly detection problems.
Provides classes and infrastructure for multiclass classification problems.
Provides simple baseline multiclass classifiers.
Provides majority vote ensemble combiners for classification along with an implementation of multiclass Adaboost.
Provides an interface to LibLinear-java for classification problems.
Provides an interface to LibSVM for classification problems.
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
Provides infrastructure for SequenceModels which emit Labels at each step of the sequence.
Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any Label based classification model.
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides an implementation of a classification factorization machine using Stochastic Gradient Descent.
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
Provides an interface to XGBoost for classification problems.
Provides classes and infrastructure for working with clustering problems.
Provides an implementation of HDBSCAN*.
Provides a multithreaded implementation of K-Means, with a configurable distance function.
Provides base classes for using liblinear from Tribuo.
The base interface to LibSVM.
Provides a K-Nearest Neighbours implementation which works across all Tribuo Output types.
Provides the base classes for models trained with stochastic gradient descent.
Provides common functionality for building decision trees, irrespective of the predicted Output.
Provides abstract classes for interfacing with XGBoost abstracting away all the Output dependent parts.
Provides utility datasets which subsample or otherwise transform the wrapped dataset.
Provides an interface for model prediction combinations, two base classes for ensemble models, a base class for ensemble excuses, and a Bagging implementation.
Provides the base interface and implementations of the Model hashing which obscures the feature names stored in a model.
Provides implementations of base classes and interfaces from org.tribuo.
This package contains the abstract implementation of an external model trained by something outside of Tribuo.
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed in Oracle Cloud Infrastructure Data Science.
This package contains a Tribuo wrapper around ONNX Runtime.
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported Tribuo output type.
Provides an interface for working with TensorFlow sequence models, using Tribuo's SequenceModel abstraction.
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of math related utils.
An interface for distance computations between two SGDVector instances along with some standard implementations.
Provides a Kernel interface for Mercer kernels, along with implementations of standard kernels.
Provides a linear algebra system used for numerical operations in Tribuo.
Provides nearest neighbour query functionality.
Provides a brute-force nearest neighbour query implementation.
Provides a k-d tree nearest neighbour query implementation.
Provides some utility tensors for use in gradient optimisers.
Provides math related util classes.
Provides classes and infrastructure for working with multi-label classification problems.
Provides implementations of binary relevance based multi-label classification algorithms.
Provides a multi-label ensemble combiner that performs a (possibly weighted) majority vote among each label independently, along with an implementation of classifier chain ensembles.
Provides an implementation of a multi-label classification factorization machine model using Stochastic Gradient Descent.
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
Classes which control the serialization of Tribuo objects to and from protocol buffers.
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
Provides simple baseline regression predictors.
Provides EnsembleCombiner implementations for working with multi-output regression problems.
Provides skeletal implementations of Regressor Trainer that can wrap a single dimension trainer/model and produce one prediction per dimension independently.
Provides an interface to liblinear for regression problems.
Provides an interface to LibSVM for regression problems.
Provides an implementation of decision trees for regression problems.
Provides an implementation of factorization machines for regression using Stochastic Gradient Descent.
Provides an implementation of linear regression using Stochastic Gradient Descent.
Provides implementations of sparse linear regression using various forms of regularisation penalty.
Provides an interface to XGBoost for regression problems.
Provides core classes for working with sequences of Examples.
Provides infrastructure for applying transformations to a Dataset.
Provides implementations of standard transformations like binning, scaling, taking logs and exponents.