Uses of Interface
org.tribuo.classification.evaluation.ConfusionMatrix
Packages that use ConfusionMatrix
Package
Description
Evaluation classes for multi-class classification.
Provides infrastructure for
SequenceModels which
emit Labels at each step of the sequence.Evaluation classes for multi-label classification using
MultiLabel.-
Uses of ConfusionMatrix in org.tribuo.classification.evaluation
Classes in org.tribuo.classification.evaluation that implement ConfusionMatrixMethods in org.tribuo.classification.evaluation that return ConfusionMatrixModifier and TypeMethodDescriptionLabelMetric.Context.getCM()Gets the confusion matrix.ClassifierEvaluation.getConfusionMatrix()Returns the underlying confusion matrix.Methods in org.tribuo.classification.evaluation with parameters of type ConfusionMatrixModifier and TypeMethodDescriptionstatic <T extends Classifiable<T>>
doubleConfusionMetrics.accuracy(EvaluationMetric.Average average, ConfusionMatrix<T> cm) Calculates the accuracy using the specified average type and confusion matrix.static <T extends Classifiable<T>>
doubleConfusionMetrics.accuracy(MetricTarget<T> target, ConfusionMatrix<T> cm) Calculates the accuracy given this confusion matrix.static <T extends Classifiable<T>>
doubleConfusionMetrics.accuracy(T label, ConfusionMatrix<T> cm) Calculates a per label accuracy given this confusion matrix.static <T extends Classifiable<T>>
doubleConfusionMetrics.balancedErrorRate(ConfusionMatrix<T> cm) Calculates the balanced error rate, i.e., the mean of the recalls.static <T extends Classifiable<T>>
doubleConfusionMetrics.f1(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Computes the F_1 score.static <T extends Classifiable<T>>
doubleConfusionMetrics.fn(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of false negatives, possibly averaged depending on the metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.fp(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of false positives, possibly averaged depending on the metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.fscore(MetricTarget<T> tgt, ConfusionMatrix<T> cm, double beta) Computes the Fscore.static <T extends Classifiable<T>>
doubleConfusionMetrics.precision(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Calculates the precision for this metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.recall(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Calculates the recall for this metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.tn(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of true negatives, possibly averaged depending on the metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.tp(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of true positives, possibly averaged depending on the metric target. -
Uses of ConfusionMatrix in org.tribuo.classification.sequence
Methods in org.tribuo.classification.sequence that return ConfusionMatrixModifier and TypeMethodDescriptionLabelSequenceEvaluation.getConfusionMatrix()Gets the confusion matrix backing this evaluation. -
Uses of ConfusionMatrix in org.tribuo.multilabel.evaluation
Classes in org.tribuo.multilabel.evaluation that implement ConfusionMatrixMethods in org.tribuo.multilabel.evaluation that return ConfusionMatrix