Uses of Class
ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
Uses of OnnxMl.StringStringEntryProto.Builder in ai.onnx.proto
Modifier and TypeMethodDescriptionOnnxMl.TensorProto.Builder.addExternalDataBuilder()
Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TensorProto.Builder.addExternalDataBuilder
(int index) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TrainingInfoProto.Builder.addInitializationBindingBuilder()
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.TrainingInfoProto.Builder.addInitializationBindingBuilder
(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.ModelProto.Builder.addMetadataPropsBuilder()
Named metadata values; keys should be distinct.OnnxMl.ModelProto.Builder.addMetadataPropsBuilder
(int index) Named metadata values; keys should be distinct.OnnxMl.TensorAnnotation.Builder.addQuantParameterTensorNamesBuilder()
<key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TensorAnnotation.Builder.addQuantParameterTensorNamesBuilder
(int index) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.StringStringEntryProto.Builder.addRepeatedField
(com.google.protobuf.Descriptors.FieldDescriptor field, Object value) OnnxMl.TrainingInfoProto.Builder.addUpdateBindingBuilder()
Gradient-based training is usually an iterative procedure.OnnxMl.TrainingInfoProto.Builder.addUpdateBindingBuilder
(int index) Gradient-based training is usually an iterative procedure.OnnxMl.StringStringEntryProto.Builder.clear()
OnnxMl.StringStringEntryProto.Builder.clearField
(com.google.protobuf.Descriptors.FieldDescriptor field) OnnxMl.StringStringEntryProto.Builder.clearKey()
optional string key = 1;
OnnxMl.StringStringEntryProto.Builder.clearOneof
(com.google.protobuf.Descriptors.OneofDescriptor oneof) OnnxMl.StringStringEntryProto.Builder.clearValue()
optional string value = 2;
OnnxMl.StringStringEntryProto.Builder.clone()
OnnxMl.TensorProto.Builder.getExternalDataBuilder
(int index) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TrainingInfoProto.Builder.getInitializationBindingBuilder
(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.ModelProto.Builder.getMetadataPropsBuilder
(int index) Named metadata values; keys should be distinct.OnnxMl.TensorAnnotation.Builder.getQuantParameterTensorNamesBuilder
(int index) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TrainingInfoProto.Builder.getUpdateBindingBuilder
(int index) Gradient-based training is usually an iterative procedure.OnnxMl.StringStringEntryProto.Builder.mergeFrom
(OnnxMl.StringStringEntryProto other) OnnxMl.StringStringEntryProto.Builder.mergeFrom
(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) OnnxMl.StringStringEntryProto.Builder.mergeFrom
(com.google.protobuf.Message other) OnnxMl.StringStringEntryProto.Builder.mergeUnknownFields
(com.google.protobuf.UnknownFieldSet unknownFields) OnnxMl.StringStringEntryProto.newBuilder()
OnnxMl.StringStringEntryProto.newBuilder
(OnnxMl.StringStringEntryProto prototype) OnnxMl.StringStringEntryProto.newBuilderForType()
protected OnnxMl.StringStringEntryProto.Builder
OnnxMl.StringStringEntryProto.newBuilderForType
(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) OnnxMl.StringStringEntryProto.Builder.setField
(com.google.protobuf.Descriptors.FieldDescriptor field, Object value) optional string key = 1;
OnnxMl.StringStringEntryProto.Builder.setKeyBytes
(com.google.protobuf.ByteString value) optional string key = 1;
OnnxMl.StringStringEntryProto.Builder.setRepeatedField
(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value) OnnxMl.StringStringEntryProto.Builder.setUnknownFields
(com.google.protobuf.UnknownFieldSet unknownFields) optional string value = 2;
OnnxMl.StringStringEntryProto.Builder.setValueBytes
(com.google.protobuf.ByteString value) optional string value = 2;
OnnxMl.StringStringEntryProto.toBuilder()
Modifier and TypeMethodDescriptionOnnxMl.TensorProto.Builder.getExternalDataBuilderList()
Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TrainingInfoProto.Builder.getInitializationBindingBuilderList()
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.ModelProto.Builder.getMetadataPropsBuilderList()
Named metadata values; keys should be distinct.OnnxMl.TensorAnnotation.Builder.getQuantParameterTensorNamesBuilderList()
<key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TrainingInfoProto.Builder.getUpdateBindingBuilderList()
Gradient-based training is usually an iterative procedure.Modifier and TypeMethodDescriptionOnnxMl.TensorProto.Builder.addExternalData
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TensorProto.Builder.addExternalData
(OnnxMl.StringStringEntryProto.Builder builderForValue) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TrainingInfoProto.Builder.addInitializationBinding
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.TrainingInfoProto.Builder.addInitializationBinding
(OnnxMl.StringStringEntryProto.Builder builderForValue) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.ModelProto.Builder.addMetadataProps
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) Named metadata values; keys should be distinct.OnnxMl.ModelProto.Builder.addMetadataProps
(OnnxMl.StringStringEntryProto.Builder builderForValue) Named metadata values; keys should be distinct.OnnxMl.TensorAnnotation.Builder.addQuantParameterTensorNames
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TensorAnnotation.Builder.addQuantParameterTensorNames
(OnnxMl.StringStringEntryProto.Builder builderForValue) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TrainingInfoProto.Builder.addUpdateBinding
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) Gradient-based training is usually an iterative procedure.OnnxMl.TrainingInfoProto.Builder.addUpdateBinding
(OnnxMl.StringStringEntryProto.Builder builderForValue) Gradient-based training is usually an iterative procedure.OnnxMl.TensorProto.Builder.setExternalData
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) Data can be stored inside the protobuf file using type-specific fields or raw_data.OnnxMl.TrainingInfoProto.Builder.setInitializationBinding
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.OnnxMl.ModelProto.Builder.setMetadataProps
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) Named metadata values; keys should be distinct.OnnxMl.TensorAnnotation.Builder.setQuantParameterTensorNames
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) <key, value> pairs to annotate tensor specified by <tensor_name> above.OnnxMl.TrainingInfoProto.Builder.setUpdateBinding
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) Gradient-based training is usually an iterative procedure.