Package | Description |
---|---|
org.tribuo |
Provides the core interfaces and classes for using Tribuo.
|
org.tribuo.classification.sequence.viterbi |
Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any
Label based classification model. |
org.tribuo.clustering.kmeans |
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
|
org.tribuo.data.columnar |
Provides classes for processing columnar data and generating
Example s. |
org.tribuo.data.columnar.processors.field |
Provides implementations of
FieldProcessor . |
org.tribuo.data.text | |
org.tribuo.data.text.impl |
Provides implementations of text data processors.
|
org.tribuo.impl |
Provides implementations of base classes and interfaces from
org.tribuo . |
org.tribuo.interop.onnx.extractors |
Provides feature extraction implementations which use ONNX models.
|
org.tribuo.sequence |
Provides core classes for working with sequences of
Example s. |
Modifier and Type | Method and Description |
---|---|
Feature |
Feature.clone() |
Feature |
Example.lookup(String i)
Returns the Feature in this Example which has the supplied name, if it's present.
|
Modifier and Type | Method and Description |
---|---|
static Comparator<Feature> |
Feature.featureNameComparator()
A comparator using the lexicographic ordering of feature names.
|
Modifier and Type | Method and Description |
---|---|
abstract void |
Example.add(Feature feature)
Adds a feature.
|
int |
Feature.compareTo(Feature o) |
abstract void |
Example.set(Feature feature)
Overwrites the feature with the matching name.
|
Modifier and Type | Method and Description |
---|---|
abstract void |
Example.addAll(Collection<? extends Feature> features)
Adds a collection of features.
|
abstract void |
Example.removeFeatures(List<Feature> featureList)
Removes all features in this list from the Example.
|
Modifier and Type | Method and Description |
---|---|
List<Feature> |
NoopFeatureExtractor.extractFeatures(List<Label> previousOutcomes,
double value) |
List<Feature> |
LabelFeatureExtractor.extractFeatures(List<Label> previousOutcomes,
double value)
Generates features based on the previously produced labels.
|
List<Feature> |
DefaultFeatureExtractor.extractFeatures(List<Label> previousOutcomes,
double value) |
Modifier and Type | Method and Description |
---|---|
List<List<Feature>> |
KMeansModel.getCentroids()
Returns a list of features, one per centroid.
|
Modifier and Type | Class and Description |
---|---|
class |
ColumnarFeature
A Feature with extra bookkeeping for use inside the columnar package.
|
Modifier and Type | Method and Description |
---|---|
static List<ColumnarFeature> |
TextFieldProcessor.wrapFeatures(String fieldName,
List<Feature> inputFeatures)
Convert the
Feature s from a text pipeline into ColumnarFeature s with the right field name. |
Modifier and Type | Method and Description |
---|---|
List<Feature> |
FeatureAggregator.aggregate(List<Feature> input)
Aggregates feature values with the same names.
|
List<Feature> |
FeatureTransformer.map(String tag,
List<Feature> features)
Transforms features into a new list of features
|
List<Feature> |
TextProcessor.process(String text)
Extracts features from the supplied text.
|
List<Feature> |
TextProcessor.process(String tag,
String text)
Extracts features from the supplied text.
|
List<Feature> |
TextPipeline.process(String tag,
String data)
Extracts a list of features from the supplied text, using the tag to prepend the feature names.
|
Modifier and Type | Method and Description |
---|---|
List<Feature> |
FeatureAggregator.aggregate(List<Feature> input)
Aggregates feature values with the same names.
|
List<Feature> |
FeatureTransformer.map(String tag,
List<Feature> features)
Transforms features into a new list of features
|
Modifier and Type | Method and Description |
---|---|
List<Feature> |
UniqueAggregator.aggregate(List<Feature> input) |
List<Feature> |
SumAggregator.aggregate(List<Feature> input) |
List<Feature> |
AverageAggregator.aggregate(List<Feature> input) |
List<Feature> |
FeatureHasher.map(String tag,
List<Feature> features) |
List<Feature> |
NgramProcessor.process(String text) |
List<Feature> |
TokenPipeline.process(String tag,
String data) |
List<Feature> |
NgramProcessor.process(String tag,
String text) |
List<Feature> |
BasicPipeline.process(String tag,
String data) |
Modifier and Type | Method and Description |
---|---|
List<Feature> |
UniqueAggregator.aggregate(List<Feature> input) |
List<Feature> |
SumAggregator.aggregate(List<Feature> input) |
List<Feature> |
AverageAggregator.aggregate(List<Feature> input) |
List<Feature> |
FeatureHasher.map(String tag,
List<Feature> features) |
Modifier and Type | Method and Description |
---|---|
Feature |
ListExample.lookup(String i) |
Feature |
BinaryFeaturesExample.lookup(String i) |
Feature |
ArrayExample.lookup(String i) |
Modifier and Type | Method and Description |
---|---|
Iterator<Feature> |
ListExample.iterator() |
Iterator<Feature> |
BinaryFeaturesExample.iterator() |
Iterator<Feature> |
ArrayExample.iterator() |
Modifier and Type | Method and Description |
---|---|
void |
ListExample.add(Feature feature) |
void |
IndexedArrayExample.add(Feature feature) |
void |
BinaryFeaturesExample.add(Feature feature)
Adds a feature to this example.
|
void |
ArrayExample.add(Feature feature) |
static void |
BinaryFeaturesExample.checkIsBinary(Feature feature) |
static boolean |
BinaryFeaturesExample.isBinary(Feature feature) |
void |
ListExample.set(Feature feature) |
void |
BinaryFeaturesExample.set(Feature feature) |
void |
ArrayExample.set(Feature feature) |
Modifier and Type | Method and Description |
---|---|
void |
ListExample.addAll(Collection<? extends Feature> features) |
void |
IndexedArrayExample.addAll(Collection<? extends Feature> features) |
void |
BinaryFeaturesExample.addAll(Collection<? extends Feature> features)
Adds a collection of features to this example.
|
void |
ArrayExample.addAll(Collection<? extends Feature> features) |
void |
ListExample.removeFeatures(List<Feature> featureList) |
void |
IndexedArrayExample.removeFeatures(List<Feature> featureList) |
void |
BinaryFeaturesExample.removeFeatures(List<Feature> featureList) |
void |
ArrayExample.removeFeatures(List<Feature> featureList) |
Constructor and Description |
---|
ArrayExample(T output,
List<? extends Feature> features)
Constructs an example from an output and a list of features.
|
BinaryFeaturesExample(T output,
List<? extends Feature> features)
Constructs an example from an output and a list of features.
|
ListExample(T output,
List<? extends Feature> features) |
Modifier and Type | Method and Description |
---|---|
List<Feature> |
BERTFeatureExtractor.process(String tag,
String data)
Tokenizes the input using the loaded tokenizer, truncates the
token list if it's longer than
maxLength - 2 (to account
for [CLS] and [SEP] tokens), and then passes the token
list to BERTFeatureExtractor.extractExample(java.util.List<java.lang.String>) . |
Modifier and Type | Method and Description |
---|---|
Iterator<Feature> |
SequenceExample.featureIterator()
Creates an iterator over every feature in this sequence.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
SequenceExample.createWithEmptyOutputs(List<? extends List<? extends Feature>> features,
OutputFactory<T> outputFactory)
Creates a SequenceExample using
OutputFactory.getUnknownOutput() as the output for each
sequence element. |
void |
SequenceExample.removeFeatures(List<Feature> features)
Removes the features in the supplied list from each example contained in this sequence.
|
Constructor and Description |
---|
SequenceExample(List<T> outputs,
List<? extends List<? extends Feature>> features)
Creates a sequence example from the supplied outputs and list of list of features.
|
SequenceExample(List<T> outputs,
List<? extends List<? extends Feature>> features,
boolean attemptBinaryFeatures) |
SequenceExample(List<T> outputs,
List<? extends List<? extends Feature>> features,
float weight)
Creates a sequence example from the supplied weight, outputs and list of list of features.
|
SequenceExample(List<T> outputs,
List<? extends List<? extends Feature>> features,
float weight,
boolean attemptBinaryFeatures) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.