Package | Description |
---|---|
org.tribuo.classification.sgd.crf |
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
|
org.tribuo.math |
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of
math related utils.
|
org.tribuo.math.la |
Provides a linear algebra system used for numerical operations in Tribuo.
|
org.tribuo.math.optimisers |
Provides implementations of
StochasticGradientOptimiser . |
org.tribuo.math.optimisers.util |
Provides some utility tensors for use in gradient optimisers.
|
Modifier and Type | Method and Description |
---|---|
Tensor[] |
CRFParameters.get() |
Tensor[] |
CRFParameters.getEmptyCopy()
Returns a 3 element
Tensor array. |
Tensor[] |
CRFParameters.merge(Tensor[][] gradients,
int size) |
Modifier and Type | Method and Description |
---|---|
Tensor[] |
CRFParameters.merge(Tensor[][] gradients,
int size) |
void |
CRFParameters.set(Tensor[] newWeights) |
void |
CRFParameters.update(Tensor[] gradients) |
Modifier and Type | Method and Description |
---|---|
Tensor[] |
Parameters.get()
Get a reference to the underlying
Tensor array. |
Tensor[] |
LinearParameters.get() |
Tensor[] |
Parameters.getEmptyCopy()
Generates an empty copy of the underlying
Tensor array. |
Tensor[] |
LinearParameters.getEmptyCopy()
This returns a
DenseMatrix the same size as the Parameters. |
Tensor[] |
LinearParameters.gradients(com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> score,
SparseVector features)
Generate the gradients for a particular feature vector given
the loss and the per output gradients.
|
Tensor[] |
Parameters.merge(Tensor[][] gradients,
int size)
Merge together an array of gradient arrays.
|
Tensor[] |
LinearParameters.merge(Tensor[][] gradients,
int size) |
Tensor[] |
StochasticGradientOptimiser.step(Tensor[] updates,
double weight)
Take a
Tensor array of gradients and transform them
according to the current weight and learning rates. |
Modifier and Type | Method and Description |
---|---|
Tensor[] |
Parameters.merge(Tensor[][] gradients,
int size)
Merge together an array of gradient arrays.
|
Tensor[] |
LinearParameters.merge(Tensor[][] gradients,
int size) |
void |
Parameters.set(Tensor[] newWeights)
Set the underlying
Tensor array to newWeights. |
void |
LinearParameters.set(Tensor[] newWeights) |
Tensor[] |
StochasticGradientOptimiser.step(Tensor[] updates,
double weight)
Take a
Tensor array of gradients and transform them
according to the current weight and learning rates. |
void |
Parameters.update(Tensor[] gradients)
Apply gradients to the parameters.
|
void |
LinearParameters.update(Tensor[] gradients) |
Modifier and Type | Interface and Description |
---|---|
interface |
Matrix
Interface for 2 dimensional
Tensor s. |
interface |
SGDVector
Interface for 1 dimensional
Tensor s. |
Modifier and Type | Class and Description |
---|---|
class |
DenseMatrix
A dense matrix, backed by a primitive array.
|
class |
DenseSparseMatrix
A matrix which is dense in the first dimension and sparse in the second.
|
class |
DenseVector
A dense vector, backed by a double array.
|
class |
SparseVector
A sparse vector.
|
Modifier and Type | Method and Description |
---|---|
Tensor |
Tensor.reshape(int[] shape)
Reshapes the Tensor to the supplied shape.
|
Tensor |
SparseVector.reshape(int[] newShape) |
Tensor |
DenseVector.reshape(int[] newShape) |
Tensor |
DenseSparseMatrix.reshape(int[] newShape) |
Tensor |
DenseMatrix.reshape(int[] newShape) |
Modifier and Type | Method and Description |
---|---|
Tensor[] |
SGD.step(Tensor[] updates,
double weight) |
Tensor[] |
RMSProp.step(Tensor[] updates,
double weight) |
Tensor[] |
Pegasos.step(Tensor[] updates,
double weight) |
Tensor[] |
ParameterAveraging.step(Tensor[] updates,
double weight)
This passes the gradient update to the inner optimiser, then updates
the average weight values.
|
Tensor[] |
Adam.step(Tensor[] updates,
double weight) |
Tensor[] |
AdaGradRDA.step(Tensor[] updates,
double weight) |
Tensor[] |
AdaGrad.step(Tensor[] updates,
double weight) |
Tensor[] |
AdaDelta.step(Tensor[] updates,
double weight) |
Modifier and Type | Method and Description |
---|---|
Tensor[] |
SGD.step(Tensor[] updates,
double weight) |
Tensor[] |
RMSProp.step(Tensor[] updates,
double weight) |
Tensor[] |
Pegasos.step(Tensor[] updates,
double weight) |
Tensor[] |
ParameterAveraging.step(Tensor[] updates,
double weight)
This passes the gradient update to the inner optimiser, then updates
the average weight values.
|
Tensor[] |
Adam.step(Tensor[] updates,
double weight) |
Tensor[] |
AdaGradRDA.step(Tensor[] updates,
double weight) |
Tensor[] |
AdaGrad.step(Tensor[] updates,
double weight) |
Tensor[] |
AdaDelta.step(Tensor[] updates,
double weight) |
Modifier and Type | Class and Description |
---|---|
class |
ShrinkingMatrix
A subclass of
DenseMatrix which shrinks the value every time a new value is added. |
class |
ShrinkingVector
A subclass of
DenseVector which shrinks the value every time a new value is added. |
Modifier and Type | Method and Description |
---|---|
Tensor |
ShrinkingTensor.convertToDense() |
Modifier and Type | Method and Description |
---|---|
void |
ShrinkingVector.intersectAndAddInPlace(Tensor other,
DoubleUnaryOperator f) |
void |
ShrinkingMatrix.intersectAndAddInPlace(Tensor other,
DoubleUnaryOperator f) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.