Uses of Interface
org.tribuo.math.StochasticGradientOptimiser
Packages that use StochasticGradientOptimiser
Package
Description
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of
math related utils.
Provides implementations of
StochasticGradientOptimiser
.Provides an implementation of linear regression using Stochastic Gradient Descent.
-
Uses of StochasticGradientOptimiser in org.tribuo.classification.sgd.crf
Constructors in org.tribuo.classification.sgd.crf with parameters of type StochasticGradientOptimiserModifierConstructorDescriptionCRFTrainer
(StochasticGradientOptimiser optimiser, int epochs, int loggingInterval, int minibatchSize, long seed) Creates a CRFTrainer which uses SGD to learn the parameters.CRFTrainer
(StochasticGradientOptimiser optimiser, int epochs, int loggingInterval, long seed) Sets the minibatch size to 1.CRFTrainer
(StochasticGradientOptimiser optimiser, int epochs, long seed) Sets the minibatch size to 1 and the logging interval to 100. -
Uses of StochasticGradientOptimiser in org.tribuo.classification.sgd.linear
Constructors in org.tribuo.classification.sgd.linear with parameters of type StochasticGradientOptimiserModifierConstructorDescriptionLinearSGDTrainer
(LabelObjective objective, StochasticGradientOptimiser optimiser, int epochs, int loggingInterval, int minibatchSize, long seed) Constructs an SGD trainer for a linear model.LinearSGDTrainer
(LabelObjective objective, StochasticGradientOptimiser optimiser, int epochs, int loggingInterval, long seed) Sets the minibatch size to 1.LinearSGDTrainer
(LabelObjective objective, StochasticGradientOptimiser optimiser, int epochs, long seed) Sets the minibatch size to 1 and the logging interval to 1000. -
Uses of StochasticGradientOptimiser in org.tribuo.math
Methods in org.tribuo.math that return StochasticGradientOptimiserModifier and TypeMethodDescriptionStochasticGradientOptimiser.copy()
Copies a gradient optimiser with it's configuration. -
Uses of StochasticGradientOptimiser in org.tribuo.math.optimisers
Classes in org.tribuo.math.optimisers that implement StochasticGradientOptimiserModifier and TypeClassDescriptionclass
An implementation of the AdaDelta gradient optimiser.class
An implementation of the AdaGrad gradient optimiser.class
An implementation of the AdaGrad gradient optimiser with regularized dual averaging.class
An implementation of the Adam gradient optimiser.class
Averages the parameters across a gradient run.class
An implementation of the Pegasos gradient optimiser used primarily for solving the SVM problem.class
An implementation of the RMSProp gradient optimiser.class
An implementation of single learning rate SGD and optionally momentum.Methods in org.tribuo.math.optimisers that return StochasticGradientOptimiserModifier and TypeMethodDescriptionGradientOptimiserOptions.getOptimiser()
Gets the configured gradient optimiser.Constructors in org.tribuo.math.optimisers with parameters of type StochasticGradientOptimiserModifierConstructorDescriptionParameterAveraging
(StochasticGradientOptimiser optimiser) Adds parameter averaging around a gradient optimiser. -
Uses of StochasticGradientOptimiser in org.tribuo.regression.sgd.linear
Constructors in org.tribuo.regression.sgd.linear with parameters of type StochasticGradientOptimiserModifierConstructorDescriptionLinearSGDTrainer
(RegressionObjective objective, StochasticGradientOptimiser optimiser, int epochs, int loggingInterval, int minibatchSize, long seed) Constructs an SGD trainer for a linear model.LinearSGDTrainer
(RegressionObjective objective, StochasticGradientOptimiser optimiser, int epochs, int loggingInterval, long seed) Sets the minibatch size to 1.LinearSGDTrainer
(RegressionObjective objective, StochasticGradientOptimiser optimiser, int epochs, long seed) Sets the minibatch size to 1 and the logging interval to 1000.