Uses of Class
org.tribuo.MutableDataset
Package
Description
Provides the core interfaces and classes for using Tribuo.
Provides anomaly data generators used for demos and testing implementations.
Provides clustering data generators used for demos and testing implementations.
Provides classes which can load columnar data (using a
RowProcessor
)
from a CSV (or other character delimited format) file.Provides a multi-label data generator for testing implementations and a
configurable data source suitable for demos and tests.
Provides some example regression data generators for testing implementations.
Provides infrastructure for applying transformations to a
Dataset
.-
Uses of MutableDataset in org.tribuo
Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
MutableDataset<T>MutableDataset.createDeepCopy
(Dataset<T> other) Creates a deep copy of the suppliedDataset
which is mutable.static MutableDataset<?>
MutableDataset.deserializeFromProto
(int version, String className, com.google.protobuf.Any message) Deserialization factory. -
Uses of MutableDataset in org.tribuo.anomaly.example
Modifier and TypeMethodDescriptionstatic MutableDataset<Event>
GaussianAnomalyDataSource.generateDataset
(int numSamples, double[] expectedMeans, double[] expectedVariances, double[] anomalousMeans, double[] anomalousVariances, float fractionAnomalous, long seed) Generates an anomaly detection dataset sampling each feature uniformly from a univariate Gaussian. -
Uses of MutableDataset in org.tribuo.clustering.example
Modifier and TypeMethodDescriptionstatic MutableDataset<ClusterID>
GaussianClusterDataSource.generateDataset
(int numSamples, double[] mixingDistribution, double[] firstMean, double[] firstVariance, double[] secondMean, double[] secondVariance, double[] thirdMean, double[] thirdVariance, double[] fourthMean, double[] fourthVariance, double[] fifthMean, double[] fifthVariance, long seed) Generates a clustering dataset drawn from a mixture of 5 Gaussians. -
Uses of MutableDataset in org.tribuo.data.csv
Modifier and TypeMethodDescriptionLoads a DataSource from the specified csv file then wraps it in a dataset.Loads a DataSource from the specified csv file then wraps it in a dataset.Loads a DataSource from the specified csv file then wraps it in a dataset.Loads a DataSource from the specified csv file then wraps it in a dataset. -
Uses of MutableDataset in org.tribuo.multilabel.example
Modifier and TypeMethodDescriptionstatic MutableDataset<MultiLabel>
MultiLabelGaussianDataSource.generateDataset
(int numSamples, float[] yZeroWeights, float[] yOneWeights, float[] yTwoWeights, float[] threshold, boolean[] negate, float variance, float[] xMin, float[] xMax, long seed) Generates a multi-label output drawn from three gaussian functions. -
Uses of MutableDataset in org.tribuo.regression.example
Modifier and TypeMethodDescriptionstatic MutableDataset<Regressor>
GaussianDataSource.generateDataset
(int numSamples, float slope, float intercept, float variance, float xMin, float xMax, long seed) Generates a single dimensional output drawn from N(slope*x + intercept,variance).static MutableDataset<Regressor>
NonlinearGaussianDataSource.generateDataset
(int numSamples, float[] weights, float intercept, float variance, float xZeroMin, float xZeroMax, float xOneMin, float xOneMax, long seed) Generates a single dimensional output drawn from N(w_0*x_0 + w_1*x_1 + w_2*x_1*x_0 + w_3*x_1*x_1*x_1 + intercept,variance). -
Uses of MutableDataset in org.tribuo.transform
Modifier and TypeMethodDescription<T extends Output<T>>
MutableDataset<T>TransformerMap.transformDataset
(Dataset<T> dataset) Copies the supplied dataset and applies the transformers to each example in it.<T extends Output<T>>
MutableDataset<T>TransformerMap.transformDataset
(Dataset<T> dataset, boolean densify) Copies the supplied dataset and applies the transformers to each example in it.