For double
Complex128 tensors are encoded as a single array of doubles,
with the real components appearing in odd numbered positions,
and the corresponding imaginary component appearing in the
subsequent even numbered position.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
For float and complex64 values
Complex64 tensors are encoded as a single array of floats,
with the real components appearing in odd numbered positions,
and the corresponding imaginary component appearing in the
subsequent even numbered position.
For int32, uint8, int8, uint16, int16, bool, and float16 values
float16 values must be bit-wise converted to an uint16_t prior
to writing to the buffer.
For uint64 and uint32 values
When this field is present, the data_type field MUST be
UINT32 or UINT64
OnnxMl.TensorProto.Builder.addDims(long value)
For double
Complex128 tensors are encoded as a single array of doubles,
with the real components appearing in odd numbered positions,
and the corresponding imaginary component appearing in the
subsequent even numbered position.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
For float and complex64 values
Complex64 tensors are encoded as a single array of floats,
with the real components appearing in odd numbered positions,
and the corresponding imaginary component appearing in the
subsequent even numbered position.
A list of named tensor values, used to specify constant inputs of the graph.
A list of named tensor values, used to specify constant inputs of the graph.
For int32, uint8, int8, uint16, int16, bool, and float16 values
float16 values must be bit-wise converted to an uint16_t prior
to writing to the buffer.
OnnxMl.TensorProto.Builder.addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field,
Object value)
OnnxMl.TensorProto.Builder.addStringData(com.google.protobuf.ByteString value)
For uint64 and uint32 values
When this field is present, the data_type field MUST be
UINT32 or UINT64
OnnxMl.TensorProto.Builder.clear()
If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
The data type of the tensor.
A human-readable documentation for this tensor.
For double
Complex128 tensors are encoded as a single array of doubles,
with the real components appearing in odd numbered positions,
and the corresponding imaginary component appearing in the
subsequent even numbered position.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
OnnxMl.TensorProto.Builder.clearField(com.google.protobuf.Descriptors.FieldDescriptor field)
For float and complex64 values
Complex64 tensors are encoded as a single array of floats,
with the real components appearing in odd numbered positions,
and the corresponding imaginary component appearing in the
subsequent even numbered position.
For int32, uint8, int8, uint16, int16, bool, and float16 values
float16 values must be bit-wise converted to an uint16_t prior
to writing to the buffer.
Optionally, a name for the tensor.
OnnxMl.TensorProto.Builder.clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof)
Serializations can either use one of the fields above, or use this
raw bytes field.
optional .onnx.TensorProto.Segment segment = 3;
For uint64 and uint32 values
When this field is present, the data_type field MUST be
UINT32 or UINT64
OnnxMl.TensorProto.Builder.clone()
The indices of the non-default values, which may be stored in one of two formats.
A list of named tensor values, used to specify constant inputs of the graph.
The sequence of non-default values are encoded as a tensor of shape [NNZ].
OnnxMl.TensorProto.Builder.mergeFrom(com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
OnnxMl.TensorProto.Builder.mergeFrom(com.google.protobuf.Message other)
optional .onnx.TensorProto.Segment segment = 3;
OnnxMl.TensorProto.Builder.mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)
OnnxMl.TensorProto.newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent)
Data can be stored inside the protobuf file using type-specific fields or raw_data.
If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
The data type of the tensor.
OnnxMl.TensorProto.Builder.setDims(int index,
long value)
A human-readable documentation for this tensor.
A human-readable documentation for this tensor.
OnnxMl.TensorProto.Builder.setDoubleData(int index,
double value)
For double
Complex128 tensors are encoded as a single array of doubles,
with the real components appearing in odd numbered positions,
and the corresponding imaginary component appearing in the
subsequent even numbered position.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
Data can be stored inside the protobuf file using type-specific fields or raw_data.
OnnxMl.TensorProto.Builder.setField(com.google.protobuf.Descriptors.FieldDescriptor field,
Object value)
OnnxMl.TensorProto.Builder.setFloatData(int index,
float value)
For float and complex64 values
Complex64 tensors are encoded as a single array of floats,
with the real components appearing in odd numbered positions,
and the corresponding imaginary component appearing in the
subsequent even numbered position.
OnnxMl.TensorProto.Builder.setInt32Data(int index,
int value)
For int32, uint8, int8, uint16, int16, bool, and float16 values
float16 values must be bit-wise converted to an uint16_t prior
to writing to the buffer.
OnnxMl.TensorProto.Builder.setInt64Data(int index,
long value)
Optionally, a name for the tensor.
OnnxMl.TensorProto.Builder.setNameBytes(com.google.protobuf.ByteString value)
Optionally, a name for the tensor.
OnnxMl.TensorProto.Builder.setRawData(com.google.protobuf.ByteString value)
Serializations can either use one of the fields above, or use this
raw bytes field.
OnnxMl.TensorProto.Builder.setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field,
int index,
Object value)
optional .onnx.TensorProto.Segment segment = 3;
optional .onnx.TensorProto.Segment segment = 3;
OnnxMl.TensorProto.Builder.setStringData(int index,
com.google.protobuf.ByteString value)
For uint64 and uint32 values
When this field is present, the data_type field MUST be
UINT32 or UINT64
OnnxMl.TensorProto.Builder.setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields)