Interface MultiLabelObjective
- All Superinterfaces:
com.oracle.labs.mlrg.olcut.config.Configurable,com.oracle.labs.mlrg.olcut.provenance.Provenancable<com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance>,SGDObjective<SGDVector>
- All Known Implementing Classes:
BinaryCrossEntropy,Hinge
An interface for multi-label prediction objectives.
An objective knows if it generates a probabilistic model or not, and what kind of normalization needs to be applied to produce probability values.
-
Method Summary
Modifier and TypeMethodDescriptionGenerates a newVectorNormalizerwhich normalizes the predictions into a suitable format.booleanDoes the objective function score probabilities or not?doubleThe default prediction threshold for creating the output.Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfigMethods inherited from interface com.oracle.labs.mlrg.olcut.provenance.Provenancable
getProvenanceMethods inherited from interface org.tribuo.common.sgd.SGDObjective
lossAndGradient
-
Method Details
-
getNormalizer
VectorNormalizer getNormalizer()Generates a newVectorNormalizerwhich normalizes the predictions into a suitable format.- Returns:
- The vector normalizer for this objective.
-
isProbabilistic
boolean isProbabilistic()Does the objective function score probabilities or not?- Returns:
- boolean.
-
threshold
double threshold()The default prediction threshold for creating the output.- Returns:
- The threshold.
-