Package | Description |
---|---|
org.tribuo.classification.sgd.crf |
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
|
org.tribuo.classification.sgd.linear |
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
|
org.tribuo.math.optimisers |
Provides implementations of
StochasticGradientOptimiser . |
org.tribuo.regression.sgd |
Provides infrastructure for Stochastic Gradient Descent based regression models.
|
Class and Description |
---|
GradientOptimiserOptions
CLI options for configuring a gradient optimiser.
|
Class and Description |
---|
GradientOptimiserOptions
CLI options for configuring a gradient optimiser.
|
Class and Description |
---|
AdaDelta
An implementation of the AdaDelta gradient optimiser.
|
AdaGrad
An implementation of the AdaGrad gradient optimiser.
|
AdaGradRDA
An implementation of the AdaGrad gradient optimiser with regularized dual averaging.
|
Adam
An implementation of the Adam gradient optimiser.
|
GradientOptimiserOptions.StochasticGradientOptimiserType
Type of the gradient optimisers available in CLIs.
|
ParameterAveraging
Averages the parameters across a gradient run.
|
Pegasos
An implementation of the Pegasos gradient optimiser used primarily for solving the SVM problem.
|
RMSProp
An implementation of the RMSProp gradient optimiser.
|
SGD
An implementation of single learning rate SGD and optionally momentum.
|
SGD.Momentum
Momentum types.
|
Class and Description |
---|
GradientOptimiserOptions
CLI options for configuring a gradient optimiser.
|
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.