Package | Description |
---|---|
org.tribuo.regression.sgd.linear |
Provides an implementation of linear regression using Stochastic Gradient Descent.
|
org.tribuo.regression.sgd.objectives |
Provides regression loss functions for Stochastic Gradient Descent.
|
Constructor and Description |
---|
LinearSGDTrainer(RegressionObjective objective,
StochasticGradientOptimiser optimiser,
int epochs,
int loggingInterval,
int minibatchSize,
long seed)
Constructs an SGD trainer for a linear model.
|
LinearSGDTrainer(RegressionObjective objective,
StochasticGradientOptimiser optimiser,
int epochs,
int loggingInterval,
long seed)
Sets the minibatch size to 1.
|
LinearSGDTrainer(RegressionObjective objective,
StochasticGradientOptimiser optimiser,
int epochs,
long seed)
Sets the minibatch size to 1 and the logging interval to 1000.
|
Modifier and Type | Class and Description |
---|---|
class |
AbsoluteLoss
Absolute loss (i.e., l1).
|
class |
Huber
Huber loss, i.e., a mixture of l2 and l1 losses.
|
class |
SquaredLoss
Squared loss, i.e., l2.
|
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.