Package | Description |
---|---|
org.tribuo.classification.sgd |
Provides infrastructure for Stochastic Gradient Descent for classification problems.
|
org.tribuo.classification.sgd.objectives |
Provides classification loss functions for Stochastic Gradient Descent.
|
org.tribuo.math |
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of
math related utils.
|
org.tribuo.math.la |
Provides a linear algebra system used for numerical operations in Tribuo.
|
org.tribuo.math.optimisers.util |
Provides some utility tensors for use in gradient optimisers.
|
org.tribuo.regression.sgd |
Provides infrastructure for Stochastic Gradient Descent based regression models.
|
org.tribuo.regression.sgd.objectives |
Provides regression loss functions for Stochastic Gradient Descent.
|
Modifier and Type | Method and Description |
---|---|
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
LabelObjective.valueAndGradient(int truth,
SGDVector prediction)
Scores a prediction, returning the loss and a vector of per label gradients.
|
Modifier and Type | Method and Description |
---|---|
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
LabelObjective.valueAndGradient(int truth,
SGDVector prediction)
Scores a prediction, returning the loss and a vector of per label gradients.
|
Modifier and Type | Method and Description |
---|---|
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
LogMulticlass.valueAndGradient(int truth,
SGDVector prediction)
Returns a
Pair of Double and the supplied prediction vector. |
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
Hinge.valueAndGradient(int truth,
SGDVector prediction)
|
Modifier and Type | Method and Description |
---|---|
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
LogMulticlass.valueAndGradient(int truth,
SGDVector prediction)
Returns a
Pair of Double and the supplied prediction vector. |
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
Hinge.valueAndGradient(int truth,
SGDVector prediction)
|
Modifier and Type | Method and Description |
---|---|
SGDVector |
LinearParameters.predict(SparseVector example)
Generates an unnormalised prediction by leftMultiply'ing the weights with the incoming features.
|
Modifier and Type | Method and Description |
---|---|
Tensor[] |
LinearParameters.gradients(com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> score,
SparseVector features)
Generate the gradients for a particular feature vector given
the loss and the per output gradients.
|
Modifier and Type | Class and Description |
---|---|
class |
DenseVector
A dense vector, backed by a double array.
|
class |
SparseVector
A sparse vector.
|
Modifier and Type | Method and Description |
---|---|
SGDVector |
SparseVector.add(SGDVector other)
Adds
other to this vector, producing a new SGDVector . |
SGDVector |
SGDVector.add(SGDVector other)
Adds
other to this vector, producing a new SGDVector . |
SGDVector |
SGDVector.copy()
Returns a deep copy of this vector.
|
SGDVector |
Matrix.getRow(int i)
Extract a row as an
SGDVector . |
SGDVector |
Matrix.leftMultiply(SGDVector input)
Multiplies this Matrix by a
SGDVector returning a vector of the appropriate size. |
SGDVector |
Matrix.rightMultiply(SGDVector input)
Multiplies this Matrix by a
SGDVector returning a vector of the appropriate size. |
SGDVector |
SGDVector.scale(double coefficient)
Generates a new vector with each element scaled by
coefficient . |
SGDVector |
SparseVector.subtract(SGDVector other)
Subtracts
other from this vector, producing a new SGDVector . |
SGDVector |
SGDVector.subtract(SGDVector other)
Subtracts
other from this vector, producing a new SGDVector . |
Modifier and Type | Method and Description |
---|---|
SGDVector |
SparseVector.add(SGDVector other)
Adds
other to this vector, producing a new SGDVector . |
SGDVector |
SGDVector.add(SGDVector other)
Adds
other to this vector, producing a new SGDVector . |
DenseVector |
DenseVector.add(SGDVector other)
Adds
other to this vector, producing a new DenseVector . |
void |
DenseMatrix.broadcastIntersectAndAddInPlace(SGDVector input,
boolean broadcastOverDim1)
Broadcasts the input vector and adds it to each row/column of the matrix.
|
default double |
SGDVector.cosineDistance(SGDVector other)
Calculates the cosine distance of two vectors.
|
default double |
SGDVector.cosineSimilarity(SGDVector other)
Calculates the cosine similarity of two vectors.
|
double |
SparseVector.distance(SGDVector other,
DoubleUnaryOperator transformFunc,
DoubleUnaryOperator normalizeFunc) |
double |
SparseVector.dot(SGDVector other) |
double |
SGDVector.dot(SGDVector other)
Calculates the dot product between this vector and
other . |
double |
DenseVector.dot(SGDVector other) |
double |
SparseVector.euclideanDistance(SGDVector other) |
double |
SGDVector.euclideanDistance(SGDVector other)
The l2 or euclidean distance between this vector and the other vector.
|
double |
DenseVector.euclideanDistance(SGDVector other)
The l2 or euclidean distance between this vector and the other vector.
|
double |
SparseVector.l1Distance(SGDVector other) |
double |
SGDVector.l1Distance(SGDVector other)
The l1 or Manhattan distance between this vector and the other vector.
|
double |
DenseVector.l1Distance(SGDVector other)
The l1 or Manhattan distance between this vector and the other vector.
|
default double |
SGDVector.l2Distance(SGDVector other)
Synonym for euclideanDistance.
|
SGDVector |
Matrix.leftMultiply(SGDVector input)
Multiplies this Matrix by a
SGDVector returning a vector of the appropriate size. |
DenseVector |
DenseSparseMatrix.leftMultiply(SGDVector input) |
DenseVector |
DenseMatrix.leftMultiply(SGDVector input) |
Matrix |
SparseVector.outer(SGDVector other)
This generates the outer product when dotted with another
SparseVector . |
Matrix |
SGDVector.outer(SGDVector other)
Generates the matrix representing the outer product between the two vectors.
|
Matrix |
DenseVector.outer(SGDVector other) |
SGDVector |
Matrix.rightMultiply(SGDVector input)
Multiplies this Matrix by a
SGDVector returning a vector of the appropriate size. |
DenseVector |
DenseSparseMatrix.rightMultiply(SGDVector input)
rightMultiply is very inefficient on DenseSparseMatrix due to the storage format.
|
DenseVector |
DenseMatrix.rightMultiply(SGDVector input) |
SGDVector |
SparseVector.subtract(SGDVector other)
Subtracts
other from this vector, producing a new SGDVector . |
SGDVector |
SGDVector.subtract(SGDVector other)
Subtracts
other from this vector, producing a new SGDVector . |
DenseVector |
DenseVector.subtract(SGDVector other)
Subtracts
other from this vector, producing a new DenseVector . |
Modifier and Type | Class and Description |
---|---|
class |
ShrinkingVector
A subclass of
DenseVector which shrinks the value every time a new value is added. |
Modifier and Type | Method and Description |
---|---|
double |
ShrinkingVector.dot(SGDVector other) |
DenseVector |
ShrinkingMatrix.leftMultiply(SGDVector input) |
Modifier and Type | Method and Description |
---|---|
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
RegressionObjective.loss(DenseVector truth,
SGDVector prediction)
Scores a prediction, returning the loss.
|
Modifier and Type | Method and Description |
---|---|
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
RegressionObjective.loss(DenseVector truth,
SGDVector prediction)
Scores a prediction, returning the loss.
|
Modifier and Type | Method and Description |
---|---|
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
SquaredLoss.loss(DenseVector truth,
SGDVector prediction) |
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
Huber.loss(DenseVector truth,
SGDVector prediction) |
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
AbsoluteLoss.loss(DenseVector truth,
SGDVector prediction) |
Modifier and Type | Method and Description |
---|---|
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
SquaredLoss.loss(DenseVector truth,
SGDVector prediction) |
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
Huber.loss(DenseVector truth,
SGDVector prediction) |
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
AbsoluteLoss.loss(DenseVector truth,
SGDVector prediction) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.