Uses of Class
org.tribuo.math.la.DenseVector
Packages that use DenseVector
Package
Description
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
Provides a linear algebra system used for numerical operations in Tribuo.
Provides some utility tensors for use in gradient optimisers.
Provides infrastructure for Stochastic Gradient Descent based regression models.
Provides regression loss functions for Stochastic Gradient Descent.
-
Uses of DenseVector in org.tribuo.classification.sgd.crf
Fields in org.tribuo.classification.sgd.crf declared as DenseVectorModifier and TypeFieldDescriptionfinal DenseVector[]ChainHelper.ChainBPResults.alphasfinal DenseVector[]ChainHelper.ChainBPResults.betasfinal DenseVector[]ChainHelper.ChainCliqueValues.localValuesMethods in org.tribuo.classification.sgd.crf that return DenseVectorModifier and TypeMethodDescriptionCRFModel.getFeatureWeights(int featureID) Get a copy of the weights for featurefeatureID.CRFModel.getFeatureWeights(String featureName) Get a copy of the weights for feature namedfeatureName.CRFParameters.getFeatureWeights(int id) CRFParameters.getLocalScores(SparseVector[] features) Generate the local scores (i.e., the linear classifier for each token).CRFParameters.predictMarginals(SparseVector[] features) Generate a prediction using Belief Propagation.Methods in org.tribuo.classification.sgd.crf with parameters of type DenseVectorModifier and TypeMethodDescriptionstatic doubleChainHelper.sumLogProbs(DenseVector input) Sums the log probabilities.Constructors in org.tribuo.classification.sgd.crf with parameters of type DenseVectorModifierConstructorDescriptionChainBPResults(double logZ, DenseVector[] alphas, DenseVector[] betas, ChainHelper.ChainCliqueValues scores) ChainCliqueValues(DenseVector[] localValues, DenseMatrix transitionValues) -
Uses of DenseVector in org.tribuo.clustering.kmeans
Methods in org.tribuo.clustering.kmeans that return DenseVectorModifier and TypeMethodDescriptionKMeansModel.getCentroidVectors()Returns a copy of the centroids.protected static DenseVector[]KMeansTrainer.initialiseCentroids(int centroids, Dataset<ClusterID> examples, ImmutableFeatureMap featureMap, SplittableRandom rng) Initialisation method called at the start of each train call.Methods in org.tribuo.clustering.kmeans with parameters of type DenseVectorModifier and TypeMethodDescriptionprotected voidKMeansTrainer.mStep(ForkJoinPool fjp, DenseVector[] centroidVectors, Map<Integer, List<Integer>> clusterAssignments, SparseVector[] data, double[] weights) -
Uses of DenseVector in org.tribuo.math.la
Methods in org.tribuo.math.la that return DenseVectorModifier and TypeMethodDescriptionAddsotherto this vector, producing a newDenseVector.DenseMatrix.columnSum()DenseVector.copy()static DenseVectorDenseVector.createDenseVector(double[] values) Defensively copies the values before construction.DenseMatrix.gatherAcrossDim1(int[] elements) DenseMatrix.gatherAcrossDim2(int[] elements) DenseMatrix.getColumn(int index) DenseMatrix.getRow(int i) DenseMatrix.leftMultiply(SGDVector input) DenseSparseMatrix.leftMultiply(SGDVector input) DenseMatrix.rightMultiply(SGDVector input) DenseSparseMatrix.rightMultiply(SGDVector input) rightMultiply is very inefficient on DenseSparseMatrix due to the storage format.DenseMatrix.rowSum()DenseSparseMatrix.rowSum()Matrix.rowSum()Generates aDenseVectorrepresenting the sum of each row.DenseVector.scale(double coefficient) Subtractsotherfrom this vector, producing a newDenseVector.Methods in org.tribuo.math.la with parameters of type DenseVectorModifier and TypeMethodDescriptionvoidDenseMatrix.rowScaleInPlace(DenseVector scalingCoefficients) voidDenseSparseMatrix.rowScaleInPlace(DenseVector scalingCoefficients) voidMatrix.rowScaleInPlace(DenseVector scalingCoefficients) Scales each row by the appropriate value in theDenseVector.voidDenseVector.setElements(DenseVector other) Sets all the elements of this vector to be the same asother.Constructors in org.tribuo.math.la with parameters of type DenseVector -
Uses of DenseVector in org.tribuo.math.optimisers.util
Subclasses of DenseVector in org.tribuo.math.optimisers.utilModifier and TypeClassDescriptionclassA subclass ofDenseVectorwhich shrinks the value every time a new value is added.Methods in org.tribuo.math.optimisers.util that return DenseVectorModifier and TypeMethodDescriptionShrinkingVector.convertToDense()ShrinkingMatrix.leftMultiply(SGDVector input) Constructors in org.tribuo.math.optimisers.util with parameters of type DenseVectorModifierConstructorDescriptionShrinkingVector(DenseVector v, double baseRate, boolean scaleShrinking) ShrinkingVector(DenseVector v, double baseRate, double lambda) -
Uses of DenseVector in org.tribuo.regression.sgd
Methods in org.tribuo.regression.sgd with parameters of type DenseVectorModifier and TypeMethodDescriptionRegressionObjective.loss(DenseVector truth, SGDVector prediction) Scores a prediction, returning the loss.static voidUtil.shuffleInPlace(SparseVector[] features, DenseVector[] regressors, double[] weights, int[] indices, SplittableRandom rng) In place shuffle of the features, labels and weights.static voidUtil.shuffleInPlace(SparseVector[] features, DenseVector[] regressors, double[] weights, SplittableRandom rng) In place shuffle of the features, labels and weights. -
Uses of DenseVector in org.tribuo.regression.sgd.objectives
Methods in org.tribuo.regression.sgd.objectives with parameters of type DenseVectorModifier and TypeMethodDescriptionAbsoluteLoss.loss(DenseVector truth, SGDVector prediction) Huber.loss(DenseVector truth, SGDVector prediction) SquaredLoss.loss(DenseVector truth, SGDVector prediction)