Package | Description |
---|---|
org.tribuo.classification.sgd.crf |
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
|
org.tribuo.clustering.kmeans |
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
|
org.tribuo.math.la |
Provides a linear algebra system used for numerical operations in Tribuo.
|
org.tribuo.math.optimisers.util |
Provides some utility tensors for use in gradient optimisers.
|
org.tribuo.regression.sgd |
Provides infrastructure for Stochastic Gradient Descent based regression models.
|
org.tribuo.regression.sgd.objectives |
Provides regression loss functions for Stochastic Gradient Descent.
|
Modifier and Type | Field and Description |
---|---|
DenseVector[] |
ChainHelper.ChainBPResults.alphas |
DenseVector[] |
ChainHelper.ChainBPResults.betas |
DenseVector[] |
ChainHelper.ChainCliqueValues.localValues |
Modifier and Type | Method and Description |
---|---|
DenseVector |
CRFParameters.getFeatureWeights(int id) |
DenseVector |
CRFModel.getFeatureWeights(int featureID)
Get a copy of the weights for feature
featureID . |
DenseVector |
CRFModel.getFeatureWeights(String featureName)
Get a copy of the weights for feature named
featureName . |
DenseVector[] |
CRFParameters.getLocalScores(SparseVector[] features)
Generate the local scores (i.e., the linear classifier for each token).
|
DenseVector[] |
CRFParameters.predictMarginals(SparseVector[] features)
Generate a prediction using Belief Propagation.
|
Modifier and Type | Method and Description |
---|---|
static double |
ChainHelper.sumLogProbs(DenseVector input)
Sums the log probabilities.
|
Constructor and Description |
---|
ChainBPResults(double logZ,
DenseVector[] alphas,
DenseVector[] betas,
ChainHelper.ChainCliqueValues scores) |
ChainBPResults(double logZ,
DenseVector[] alphas,
DenseVector[] betas,
ChainHelper.ChainCliqueValues scores) |
ChainCliqueValues(DenseVector[] localValues,
DenseMatrix transitionValues) |
Modifier and Type | Method and Description |
---|---|
DenseVector[] |
KMeansModel.getCentroidVectors()
Returns a copy of the centroids.
|
protected static DenseVector[] |
KMeansTrainer.initialiseCentroids(int centroids,
Dataset<ClusterID> examples,
ImmutableFeatureMap featureMap,
SplittableRandom rng)
Initialisation method called at the start of each train call.
|
Modifier and Type | Method and Description |
---|---|
protected void |
KMeansTrainer.mStep(ForkJoinPool fjp,
DenseVector[] centroidVectors,
Map<Integer,List<Integer>> clusterAssignments,
SparseVector[] data,
double[] weights) |
Modifier and Type | Method and Description |
---|---|
DenseVector |
DenseVector.add(SGDVector other)
Adds
other to this vector, producing a new DenseVector . |
DenseVector |
DenseMatrix.columnSum() |
DenseVector |
DenseVector.copy() |
static DenseVector |
DenseVector.createDenseVector(double[] values)
Defensively copies the values before construction.
|
DenseVector |
DenseMatrix.gatherAcrossDim1(int[] elements) |
DenseVector |
DenseMatrix.gatherAcrossDim2(int[] elements) |
DenseVector |
DenseMatrix.getColumn(int index) |
DenseVector |
DenseMatrix.getRow(int i) |
DenseVector |
DenseSparseMatrix.leftMultiply(SGDVector input) |
DenseVector |
DenseMatrix.leftMultiply(SGDVector input) |
DenseVector |
DenseSparseMatrix.rightMultiply(SGDVector input)
rightMultiply is very inefficient on DenseSparseMatrix due to the storage format.
|
DenseVector |
DenseMatrix.rightMultiply(SGDVector input) |
DenseVector |
Matrix.rowSum()
Generates a
DenseVector representing the sum of each row. |
DenseVector |
DenseSparseMatrix.rowSum() |
DenseVector |
DenseMatrix.rowSum() |
DenseVector |
DenseVector.scale(double coefficient) |
DenseVector |
DenseVector.subtract(SGDVector other)
Subtracts
other from this vector, producing a new DenseVector . |
Modifier and Type | Method and Description |
---|---|
void |
Matrix.rowScaleInPlace(DenseVector scalingCoefficients)
Scales each row by the appropriate value in the
DenseVector . |
void |
DenseSparseMatrix.rowScaleInPlace(DenseVector scalingCoefficients) |
void |
DenseMatrix.rowScaleInPlace(DenseVector scalingCoefficients) |
void |
DenseVector.setElements(DenseVector other)
Sets all the elements of this vector to be the same as
other . |
Constructor and Description |
---|
DenseVector(DenseVector other) |
Modifier and Type | Class and Description |
---|---|
class |
ShrinkingVector
A subclass of
DenseVector which shrinks the value every time a new value is added. |
Modifier and Type | Method and Description |
---|---|
DenseVector |
ShrinkingVector.convertToDense() |
DenseVector |
ShrinkingMatrix.leftMultiply(SGDVector input) |
Constructor and Description |
---|
ShrinkingVector(DenseVector v,
double baseRate,
boolean scaleShrinking) |
ShrinkingVector(DenseVector v,
double baseRate,
double lambda) |
Modifier and Type | Method and Description |
---|---|
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
RegressionObjective.loss(DenseVector truth,
SGDVector prediction)
Scores a prediction, returning the loss.
|
static void |
Util.shuffleInPlace(SparseVector[] features,
DenseVector[] regressors,
double[] weights,
int[] indices,
SplittableRandom rng)
In place shuffle of the features, labels and weights.
|
static void |
Util.shuffleInPlace(SparseVector[] features,
DenseVector[] regressors,
double[] weights,
SplittableRandom rng)
In place shuffle of the features, labels and weights.
|
Modifier and Type | Method and Description |
---|---|
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
SquaredLoss.loss(DenseVector truth,
SGDVector prediction) |
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
Huber.loss(DenseVector truth,
SGDVector prediction) |
com.oracle.labs.mlrg.olcut.util.Pair<Double,SGDVector> |
AbsoluteLoss.loss(DenseVector truth,
SGDVector prediction) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.