Package org.tribuo.regression.xgboost
Class XGBoostOptions
java.lang.Object
org.tribuo.regression.xgboost.XGBoostOptions
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Options
CLI options for configuring an XGBoost regression trainer.
-
Field Summary
Modifier and TypeFieldDescriptionfloat
L1 regularization term for weights (default 0).int
Max tree depth (default 6, range (0,inf]).int
Number of trees in the ensemble.float
Step size shrinkage parameter (default 0.3, range [0,1]).float
Minimum loss reduction to make a split (default 0, range [0,inf]).float
L2 regularization term for weights (default 1).float
Minimum sum of instance weights needed in a leaf (default 1, range [0,inf]).int
Number of threads to use (default 4, range (1, num hw threads)).boolean
Make the XGBoost training procedure quiet.Regression type to use.float
Subsample size for each tree (default 1, range (0,1]).float
Subsample features for each tree (default 1, range (0,1]).Fields inherited from interface com.oracle.labs.mlrg.olcut.config.Options
header
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionGets the configured XGBoostRegressionTrainer.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Options
getOptionsDescription
-
Field Details
-
rType
@Option(longName="xgb-regression-metric", usage="Regression type to use. Defaults to LINEAR.") public XGBoostRegressionTrainer.RegressionType rTypeRegression type to use. Defaults to LINEAR. -
ensembleSize
@Option(longName="xgb-ensemble-size", usage="Number of trees in the ensemble.") public int ensembleSizeNumber of trees in the ensemble. -
alpha
@Option(longName="xgb-alpha", usage="L1 regularization term for weights (default 0).") public float alphaL1 regularization term for weights (default 0). -
minWeight
@Option(longName="xgb-min-weight", usage="Minimum sum of instance weights needed in a leaf (default 1, range [0,inf]).") public float minWeightMinimum sum of instance weights needed in a leaf (default 1, range [0,inf]). -
depth
@Option(longName="xgb-max-depth", usage="Max tree depth (default 6, range (0,inf]).") public int depthMax tree depth (default 6, range (0,inf]). -
eta
@Option(longName="xgb-eta", usage="Step size shrinkage parameter (default 0.3, range [0,1]).") public float etaStep size shrinkage parameter (default 0.3, range [0,1]). -
subsampleFeatures
@Option(longName="xgb-subsample-features", usage="Subsample features for each tree (default 1, range (0,1]).") public float subsampleFeaturesSubsample features for each tree (default 1, range (0,1]). -
gamma
@Option(longName="xgb-gamma", usage="Minimum loss reduction to make a split (default 0, range [0,inf]).") public float gammaMinimum loss reduction to make a split (default 0, range [0,inf]). -
lambda
@Option(longName="xgb-lambda", usage="L2 regularization term for weights (default 1).") public float lambdaL2 regularization term for weights (default 1). -
quiet
@Option(longName="xgb-quiet", usage="Make the XGBoost training procedure quiet.") public boolean quietMake the XGBoost training procedure quiet. -
subsample
@Option(longName="xgb-subsample", usage="Subsample size for each tree (default 1, range (0,1]).") public float subsampleSubsample size for each tree (default 1, range (0,1]). -
numThreads
@Option(longName="xgb-num-threads", usage="Number of threads to use (default 4, range (1, num hw threads)).") public int numThreadsNumber of threads to use (default 4, range (1, num hw threads)).
-
-
Constructor Details
-
XGBoostOptions
public XGBoostOptions()
-
-
Method Details
-
getTrainer
Gets the configured XGBoostRegressionTrainer.- Returns:
- The configured trainer.
-