Package org.tribuo.regression.liblinear
Class LibLinearRegressionTrainer
java.lang.Object
org.tribuo.common.liblinear.LibLinearTrainer<Regressor>
org.tribuo.regression.liblinear.LibLinearRegressionTrainer
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Configurable
,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>
,Trainer<Regressor>
A
Trainer
which wraps a liblinear-java regression trainer.
This generates an independent liblinear model for each regression dimension.
See:
Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. "LIBLINEAR: A library for Large Linear Classification" Journal of Machine Learning Research, 2008.and for the original algorithm:
Cortes C, Vapnik V. "Support-Vector Networks" Machine Learning, 1995.
-
Field Summary
Fields inherited from class org.tribuo.common.liblinear.LibLinearTrainer
cost, epsilon, libLinearParams, maxIterations, seed, terminationCriterion, trainerType
Fields inherited from interface org.tribuo.Trainer
DEFAULT_SEED, INCREMENT_INVOCATION_COUNT
-
Constructor Summary
ConstructorDescriptionCreates a trainer using the default values (L2R_L2LOSS_SVR, 1, 1000, 0.1, 0.1).LibLinearRegressionTrainer
(LinearRegressionType trainerType) Creates a trainer for a LibLinear regression model.LibLinearRegressionTrainer
(LinearRegressionType trainerType, double cost, int maxIterations, double terminationCriterion, double epsilon) Creates a trainer for a LibLinear regression model.LibLinearRegressionTrainer
(LinearRegressionType trainerType, double cost, int maxIterations, double terminationCriterion, double epsilon, long seed) Creates a trainer for a LibLinear regression model. -
Method Summary
Modifier and TypeMethodDescriptionprotected LibLinearModel<Regressor>
createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputIDInfo, List<de.bwaldvogel.liblinear.Model> models) Construct the appropriate subtype of LibLinearModel for the prediction task.protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],
double[][]> extractData
(Dataset<Regressor> data, ImmutableOutputInfo<Regressor> outputInfo, ImmutableFeatureMap featureMap) Extracts the features andOutput
s in LibLinear's format.void
Used by the OLCUT configuration system, and should not be called by external code.protected List<de.bwaldvogel.liblinear.Model>
trainModels
(de.bwaldvogel.liblinear.Parameter curParams, int numFeatures, de.bwaldvogel.liblinear.FeatureNode[][] features, double[][] outputs) Train all the liblinear instances necessary for this dataset.Methods inherited from class org.tribuo.common.liblinear.LibLinearTrainer
exampleToNodes, getInvocationCount, getProvenance, setInvocationCount, setupParameters, toString, train, train, train
-
Constructor Details
-
LibLinearRegressionTrainer
public LibLinearRegressionTrainer()Creates a trainer using the default values (L2R_L2LOSS_SVR, 1, 1000, 0.1, 0.1). -
LibLinearRegressionTrainer
Creates a trainer for a LibLinear regression model.Uses the default values of cost = 1.0, maxIterations = 1000, terminationCriterion = 0.1, epsilon = 0.1.
- Parameters:
trainerType
- Loss function and optimisation method.
-
LibLinearRegressionTrainer
public LibLinearRegressionTrainer(LinearRegressionType trainerType, double cost, int maxIterations, double terminationCriterion, double epsilon) Creates a trainer for a LibLinear regression model.Uses
Trainer.DEFAULT_SEED
as the RNG seed.- Parameters:
trainerType
- Loss function and optimisation method combination.cost
- Cost penalty for each incorrectly classified training point.maxIterations
- The maximum number of dataset iterations.terminationCriterion
- How close does the optimisation function need to be before terminating that subproblem (usually set to 0.1).epsilon
- The insensitivity of the regression loss to small differences.
-
LibLinearRegressionTrainer
public LibLinearRegressionTrainer(LinearRegressionType trainerType, double cost, int maxIterations, double terminationCriterion, double epsilon, long seed) Creates a trainer for a LibLinear regression model.- Parameters:
trainerType
- Loss function and optimisation method combination.cost
- Cost penalty for each incorrectly classified training point.maxIterations
- The maximum number of dataset iterations.terminationCriterion
- How close does the optimisation function need to be before terminating that subproblem (usually set to 0.1).epsilon
- The insensitivity of the regression loss to small differences.seed
- The RNG seed.
-
-
Method Details
-
postConfig
public void postConfig()Used by the OLCUT configuration system, and should not be called by external code.- Specified by:
postConfig
in interfacecom.oracle.labs.mlrg.olcut.config.Configurable
- Overrides:
postConfig
in classLibLinearTrainer<Regressor>
-
trainModels
protected List<de.bwaldvogel.liblinear.Model> trainModels(de.bwaldvogel.liblinear.Parameter curParams, int numFeatures, de.bwaldvogel.liblinear.FeatureNode[][] features, double[][] outputs) Description copied from class:LibLinearTrainer
Train all the liblinear instances necessary for this dataset.- Specified by:
trainModels
in classLibLinearTrainer<Regressor>
- Parameters:
curParams
- The LibLinear parameters.numFeatures
- The number of features in this dataset.features
- The features themselves.outputs
- The outputs.- Returns:
- A list of liblinear models.
-
createModel
protected LibLinearModel<Regressor> createModel(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputIDInfo, List<de.bwaldvogel.liblinear.Model> models) Description copied from class:LibLinearTrainer
Construct the appropriate subtype of LibLinearModel for the prediction task.- Specified by:
createModel
in classLibLinearTrainer<Regressor>
- Parameters:
provenance
- The model provenance.featureIDMap
- The feature id map.outputIDInfo
- The output id info.models
- The list of linear models.- Returns:
- An implementation of LibLinearModel.
-
extractData
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> extractData(Dataset<Regressor> data, ImmutableOutputInfo<Regressor> outputInfo, ImmutableFeatureMap featureMap) Description copied from class:LibLinearTrainer
Extracts the features andOutput
s in LibLinear's format.- Specified by:
extractData
in classLibLinearTrainer<Regressor>
- Parameters:
data
- The input data.outputInfo
- The output info.featureMap
- The feature info.- Returns:
- The features and outputs.
-