Uses of Class
org.tribuo.regression.Regressor.DimensionTuple
Package
Description
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
Provides implementations of sparse linear regression using various forms of regularisation penalty.
-
Uses of Regressor.DimensionTuple in org.tribuo.regression
Modifier and TypeMethodDescriptionRegressor.DimensionTuple.copy()
static Regressor.DimensionTuple
Regressor.DimensionTuple.deserializeFromProto
(int version, String className, com.google.protobuf.Any message) Deserialization factory.Regressor.getDimension
(int idx) Returns a dimension tuple for the requested dimension index.Modifier and TypeMethodDescriptionRegressor.DimensionTuple.getDimension
(String name) Regressor.getDimension
(String name) Returns a dimension tuple for the requested dimension, or optional empty if it's not valid.Regressor.DimensionTuple.iterator()
Regressor.iterator()
ModifierConstructorDescriptionRegressor
(Regressor.DimensionTuple[] dimensions) Constructs a regressor from the supplied dimension tuples. -
Uses of Regressor.DimensionTuple in org.tribuo.regression.impl
Modifier and TypeMethodDescriptionprotected abstract Regressor.DimensionTuple
SkeletalIndependentRegressionModel.scoreDimension
(int dimensionIdx, SparseVector features) Makes a prediction for a single dimension.protected abstract Regressor.DimensionTuple
SkeletalIndependentRegressionSparseModel.scoreDimension
(int dimensionIdx, SparseVector features) Makes a prediction for a single dimension. -
Uses of Regressor.DimensionTuple in org.tribuo.regression.slm
Modifier and TypeMethodDescriptionprotected Regressor.DimensionTuple
SparseLinearModel.scoreDimension
(int dimensionIdx, SparseVector features)