Package org.tribuo.math.optimisers
Class Adam
java.lang.Object
org.tribuo.math.optimisers.Adam
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Configurable
,com.oracle.labs.mlrg.olcut.provenance.Provenancable<com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance>
,StochasticGradientOptimiser
An implementation of the Adam gradient optimiser.
Creates two copies of the parameters to store learning rates.
See:
Kingma, D., and Ba, J. "Adam: A Method for Stochastic Optimization" arXiv preprint arXiv:1412.6980, 2014.
-
Constructor Summary
ConstructorDescriptionAdam()
Sets initialLearningRate to 0.001, betaOne to 0.9, betaTwo to 0.999, epsilon to 1e-6.Adam
(double initialLearningRate, double epsilon) Sets betaOne to 0.9 and betaTwo to 0.999Adam
(double initialLearningRate, double betaOne, double betaTwo, double epsilon) It's highly recommended not to modify these parameters, use one of the other constructors. -
Method Summary
Modifier and TypeMethodDescriptioncopy()
Copies a gradient optimiser with it's configuration.com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance
void
initialise
(Parameters parameters) Initialises the gradient optimiser.void
reset()
Resets the optimiser so it's ready to optimise a newParameters
.Tensor[]
Take aTensor
array of gradients and transform them according to the current weight and learning rates.toString()
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfig
Methods inherited from interface org.tribuo.math.StochasticGradientOptimiser
finalise
-
Constructor Details
-
Adam
public Adam(double initialLearningRate, double betaOne, double betaTwo, double epsilon) It's highly recommended not to modify these parameters, use one of the other constructors.- Parameters:
initialLearningRate
- The initial learning rate.betaOne
- The value of beta-one.betaTwo
- The value of beta-two.epsilon
- The epsilon value.
-
Adam
public Adam(double initialLearningRate, double epsilon) Sets betaOne to 0.9 and betaTwo to 0.999- Parameters:
initialLearningRate
- The initial learning rate.epsilon
- The epsilon value.
-
Adam
public Adam()Sets initialLearningRate to 0.001, betaOne to 0.9, betaTwo to 0.999, epsilon to 1e-6. These are the parameters from the Adam paper.
-
-
Method Details
-
initialise
Description copied from interface:StochasticGradientOptimiser
Initialises the gradient optimiser.Configures any learning rate parameters.
- Specified by:
initialise
in interfaceStochasticGradientOptimiser
- Parameters:
parameters
- The parameters to optimise.
-
step
Description copied from interface:StochasticGradientOptimiser
Take aTensor
array of gradients and transform them according to the current weight and learning rates.Can return the same
Tensor
array or a new one.- Specified by:
step
in interfaceStochasticGradientOptimiser
- Parameters:
updates
- An array of gradients.weight
- The weight for the current gradients.- Returns:
- A
Tensor
array of gradients.
-
toString
-
reset
public void reset()Description copied from interface:StochasticGradientOptimiser
Resets the optimiser so it's ready to optimise a newParameters
.- Specified by:
reset
in interfaceStochasticGradientOptimiser
-
copy
Description copied from interface:StochasticGradientOptimiser
Copies a gradient optimiser with it's configuration. Usually calls the copy constructor.- Specified by:
copy
in interfaceStochasticGradientOptimiser
- Returns:
- A gradient optimiser with the same configuration, but independent state.
-
getProvenance
public com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance getProvenance()- Specified by:
getProvenance
in interfacecom.oracle.labs.mlrg.olcut.provenance.Provenancable<com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance>
-