Package org.tribuo.math.optimisers
Class AdaGrad
java.lang.Object
org.tribuo.math.optimisers.AdaGrad
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Configurable
,com.oracle.labs.mlrg.olcut.provenance.Provenancable<com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance>
,StochasticGradientOptimiser
An implementation of the AdaGrad gradient optimiser.
Creates one copy of the parameters to store learning rates.
See:
Duchi, J., Hazan, E., and Singer, Y. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization" Journal of Machine Learning Research, 2012, 2121-2159.
-
Constructor Summary
ConstructorDescriptionAdaGrad
(double initialLearningRate) Creates an AdaGrad optimiser using the specified initial learning rate.AdaGrad
(double initialLearningRate, double epsilon) Creates an AdaGrad optimiser using the specified learning rate and epsilon.AdaGrad
(double initialLearningRate, double epsilon, double initialValue) Creates an AdaGrad optimiser using the specified learning rate, epsilon and initial accumulator value. -
Method Summary
Modifier and TypeMethodDescriptioncopy()
Copies a gradient optimiser with it's configuration.com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance
void
initialise
(Parameters parameters) Initialises the gradient optimiser.void
reset()
Resets the optimiser so it's ready to optimise a newParameters
.Tensor[]
Take aTensor
array of gradients and transform them according to the current weight and learning rates.toString()
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfig
Methods inherited from interface org.tribuo.math.StochasticGradientOptimiser
finalise
-
Constructor Details
-
AdaGrad
public AdaGrad(double initialLearningRate, double epsilon, double initialValue) Creates an AdaGrad optimiser using the specified learning rate, epsilon and initial accumulator value.- Parameters:
initialLearningRate
- The learning rate.epsilon
- The epsilon value for stabilising the gradient inversion.initialValue
- The initial value for the gradient accumulator.
-
AdaGrad
public AdaGrad(double initialLearningRate, double epsilon) Creates an AdaGrad optimiser using the specified learning rate and epsilon.Sets the initial value for the accumulator to zero.
- Parameters:
initialLearningRate
- The learning rate.epsilon
- The epsilon value for stabilising the gradient inversion.
-
AdaGrad
public AdaGrad(double initialLearningRate) Creates an AdaGrad optimiser using the specified initial learning rate.Sets epsilon to 1e-6, and the initial accumulator value to zero.
- Parameters:
initialLearningRate
- The learning rate.
-
-
Method Details
-
initialise
Description copied from interface:StochasticGradientOptimiser
Initialises the gradient optimiser.Configures any learning rate parameters.
- Specified by:
initialise
in interfaceStochasticGradientOptimiser
- Parameters:
parameters
- The parameters to optimise.
-
step
Description copied from interface:StochasticGradientOptimiser
Take aTensor
array of gradients and transform them according to the current weight and learning rates.Can return the same
Tensor
array or a new one.- Specified by:
step
in interfaceStochasticGradientOptimiser
- Parameters:
updates
- An array of gradients.weight
- The weight for the current gradients.- Returns:
- A
Tensor
array of gradients.
-
toString
-
reset
public void reset()Description copied from interface:StochasticGradientOptimiser
Resets the optimiser so it's ready to optimise a newParameters
.- Specified by:
reset
in interfaceStochasticGradientOptimiser
-
copy
Description copied from interface:StochasticGradientOptimiser
Copies a gradient optimiser with it's configuration. Usually calls the copy constructor.- Specified by:
copy
in interfaceStochasticGradientOptimiser
- Returns:
- A gradient optimiser with the same configuration, but independent state.
-
getProvenance
public com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance getProvenance()- Specified by:
getProvenance
in interfacecom.oracle.labs.mlrg.olcut.provenance.Provenancable<com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance>
-