Uses of Class
org.tribuo.clustering.ClusterID
Package
Description
Provides classes and infrastructure for working with clustering problems.
Evaluation classes for clustering.
Provides clustering data generators used for demos and testing implementations.
Provides an implementation of HDBSCAN*.
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
-
Uses of ClusterID in org.tribuo.clustering
Modifier and TypeFieldDescriptionstatic final ClusterID
ClusteringFactory.UNASSIGNED_CLUSTER_ID
The sentinel unassigned cluster id, used when there is no ground truth clustering.Modifier and TypeMethodDescriptionClusterID.copy()
static ClusterID
ClusterID.deserializeFromProto
(int version, String className, com.google.protobuf.Any message) Deserialization factory.<V> ClusterID
ClusteringFactory.generateOutput
(V label) Generates a ClusterID by calling toString on the input, then calling Integer.parseInt.ImmutableClusteringInfo.getOutput
(int id) ClusteringFactory.getUnknownOutput()
Modifier and TypeMethodDescriptionClusteringFactory.constructInfoForExternalModel
(Map<ClusterID, Integer> mapping) Unlike the other info types, clustering directly uses the integer IDs as the stored value, so this mapping discards the cluster IDs and just uses the supplied integers.ClusteringInfo.generateImmutableOutputInfo()
ClusteringFactory.generateInfo()
ClusteringInfo.generateMutableOutputInfo()
ClusteringInfo.getDomain()
ImmutableClusteringInfo.getDomain()
ClusteringFactory.getEvaluator()
ClusteringFactory.getTypeWitness()
ImmutableClusteringInfo.iterator()
Modifier and TypeMethodDescriptionClusteringFactory.constructInfoForExternalModel
(Map<ClusterID, Integer> mapping) Unlike the other info types, clustering directly uses the integer IDs as the stored value, so this mapping discards the cluster IDs and just uses the supplied integers.boolean
ImmutableClusteringInfo.domainAndIDEquals
(ImmutableOutputInfo<ClusterID> other) -
Uses of ClusterID in org.tribuo.clustering.evaluation
Modifier and TypeMethodDescriptionBiFunction<MetricTarget<ClusterID>,
org.tribuo.clustering.evaluation.ClusteringMetric.Context, Double> ClusteringMetrics.getImpl()
Gets the implementing function for this metric.ClusteringMetric.getTarget()
Modifier and TypeMethodDescriptionprotected org.tribuo.clustering.evaluation.ClusteringMetric.Context
ClusteringEvaluator.createContext
(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) protected org.tribuo.clustering.evaluation.ClusteringMetric.Context
ClusteringEvaluator.createContext
(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) org.tribuo.clustering.evaluation.ClusteringMetric.Context
ClusteringMetric.createContext
(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) org.tribuo.clustering.evaluation.ClusteringMetric.Context
ClusteringMetric.createContext
(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) protected ClusteringEvaluation
ClusteringEvaluator.createEvaluation
(org.tribuo.clustering.evaluation.ClusteringMetric.Context context, Map<MetricID<ClusterID>, Double> results, EvaluationProvenance provenance) protected Set<ClusteringMetric>
ClusteringEvaluator.createMetrics
(Model<ClusterID> model) ClusteringMetrics.forTarget
(MetricTarget<ClusterID> tgt) Constructs the metric for the specified metric target.ModifierConstructorDescriptionClusteringMetric
(MetricTarget<ClusterID> target, String name, BiFunction<MetricTarget<ClusterID>, org.tribuo.clustering.evaluation.ClusteringMetric.Context, Double> impl) Constructs a clustering metric using the supplied parameters.ClusteringMetric
(MetricTarget<ClusterID> target, String name, BiFunction<MetricTarget<ClusterID>, org.tribuo.clustering.evaluation.ClusteringMetric.Context, Double> impl) Constructs a clustering metric using the supplied parameters. -
Uses of ClusterID in org.tribuo.clustering.example
Modifier and TypeMethodDescriptionClusteringDataGenerator.denseTrainTest()
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.ClusteringDataGenerator.denseTrainTest()
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.ClusteringDataGenerator.denseTrainTest
(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.ClusteringDataGenerator.denseTrainTest
(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.ClusteringDataGenerator.emptyExample()
Generates an example with no features.ClusteringDataGenerator.gaussianClusters
(long size, long seed) Generates a dataset drawn from a mixture of 5 2d gaussians.static MutableDataset<ClusterID>
GaussianClusterDataSource.generateDataset
(int numSamples, double[] mixingDistribution, double[] firstMean, double[] firstVariance, double[] secondMean, double[] secondVariance, double[] thirdMean, double[] thirdVariance, double[] fourthMean, double[] fourthVariance, double[] fifthMean, double[] fifthVariance, long seed) Generates a clustering dataset drawn from a mixture of 5 Gaussians.GaussianClusterDataSource.getOutputFactory()
ClusteringDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.GaussianClusterDataSource.iterator()
ClusteringDataGenerator.sparseTrainTest()
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.ClusteringDataGenerator.sparseTrainTest()
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.ClusteringDataGenerator.sparseTrainTest
(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.ClusteringDataGenerator.sparseTrainTest
(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data. -
Uses of ClusterID in org.tribuo.clustering.hdbscan
Modifier and TypeMethodDescription -
Uses of ClusterID in org.tribuo.clustering.kmeans
Modifier and TypeMethodDescriptionModifier and TypeMethodDescriptionKMeansTrainer.train
(Dataset<ClusterID> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) KMeansTrainer.train
(Dataset<ClusterID> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount)