Class XGBoostOptions
java.lang.Object
org.tribuo.classification.xgboost.XGBoostOptions
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Options
,ClassificationOptions<XGBoostClassificationTrainer>
public class XGBoostOptions
extends Object
implements ClassificationOptions<XGBoostClassificationTrainer>
CLI options for training an XGBoost classifier.
-
Field Summary
Modifier and TypeFieldDescriptionfloat
L1 regularization term for weights.Weak learning algorithm.int
Number of trees in the ensemble.float
Step size shrinkage parameter (range [0,1]).float
Minimum loss reduction to make a split (range [0,Infinity]).float
L2 regularization term for weights.Make the XGBoost training procedure quiet.int
Max tree depth (range (0,Integer.MAX_VALUE]).float
Minimum sum of instance weights needed in a leaf (range [0,Infinity]).int
Number of threads to use (range (1, num hw threads)).boolean
Deprecated, use xgb-loglevel.float
Subsample size for each tree (range (0,1]).float
Subsample features for each tree (range (0,1]).Tree building algorithm.Fields inherited from interface com.oracle.labs.mlrg.olcut.config.Options
header
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionConstructs the trainer based on the provided arguments.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Options
getOptionsDescription
-
Field Details
-
xgbBoosterType
@Option(longName="xgb-booster-type", usage="Weak learning algorithm.") public XGBoostTrainer.BoosterType xgbBoosterTypeWeak learning algorithm. -
xgbTreeMethod
@Option(longName="xgb-tree-method", usage="Tree building algorithm.") public XGBoostTrainer.TreeMethod xgbTreeMethodTree building algorithm. -
xgbEnsembleSize
@Option(longName="xgb-ensemble-size", usage="Number of trees in the ensemble.") public int xgbEnsembleSizeNumber of trees in the ensemble. -
xbgAlpha
@Option(longName="xgb-alpha", usage="L1 regularization term for weights.") public float xbgAlphaL1 regularization term for weights. -
xgbMinWeight
@Option(longName="xgb-min-weight", usage="Minimum sum of instance weights needed in a leaf (range [0,Infinity]).") public float xgbMinWeightMinimum sum of instance weights needed in a leaf (range [0,Infinity]). -
xgbMaxDepth
@Option(longName="xgb-max-depth", usage="Max tree depth (range (0,Integer.MAX_VALUE]).") public int xgbMaxDepthMax tree depth (range (0,Integer.MAX_VALUE]). -
xgbEta
@Option(longName="xgb-eta", usage="Step size shrinkage parameter (range [0,1]).") public float xgbEtaStep size shrinkage parameter (range [0,1]). -
xgbSubsampleFeatures
@Option(longName="xgb-subsample-features", usage="Subsample features for each tree (range (0,1]).") public float xgbSubsampleFeaturesSubsample features for each tree (range (0,1]). -
xgbGamma
@Option(longName="xgb-gamma", usage="Minimum loss reduction to make a split (range [0,Infinity]).") public float xgbGammaMinimum loss reduction to make a split (range [0,Infinity]). -
xgbLambda
@Option(longName="xgb-lambda", usage="L2 regularization term for weights.") public float xgbLambdaL2 regularization term for weights. -
xgbQuiet
@Option(longName="xgb-quiet", usage="Deprecated, use xgb-loglevel.") public boolean xgbQuietDeprecated, use xgb-loglevel. -
xgbLogLevel
@Option(longName="xgb-loglevel", usage="Make the XGBoost training procedure quiet.") public XGBoostTrainer.LoggingVerbosity xgbLogLevelMake the XGBoost training procedure quiet. -
xgbSubsample
@Option(longName="xgb-subsample", usage="Subsample size for each tree (range (0,1]).") public float xgbSubsampleSubsample size for each tree (range (0,1]). -
xgbNumThreads
@Option(longName="xgb-num-threads", usage="Number of threads to use (range (1, num hw threads)). The default of 0 means use all hw threads.") public int xgbNumThreadsNumber of threads to use (range (1, num hw threads)). The default of 0 means use all hw threads.
-
-
Constructor Details
-
XGBoostOptions
public XGBoostOptions()
-
-
Method Details
-
getTrainer
Description copied from interface:ClassificationOptions
Constructs the trainer based on the provided arguments.- Specified by:
getTrainer
in interfaceClassificationOptions<XGBoostClassificationTrainer>
- Returns:
- The trainer.
-