Class XGBoostOptions

java.lang.Object
org.tribuo.classification.xgboost.XGBoostOptions
All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Options, ClassificationOptions<XGBoostClassificationTrainer>

public class XGBoostOptions extends Object implements ClassificationOptions<XGBoostClassificationTrainer>
CLI options for training an XGBoost classifier.
  • Field Details

    • xgbBoosterType

      @Option(longName="xgb-booster-type", usage="Weak learning algorithm.") public XGBoostTrainer.BoosterType xgbBoosterType
      Weak learning algorithm.
    • xgbTreeMethod

      @Option(longName="xgb-tree-method", usage="Tree building algorithm.") public XGBoostTrainer.TreeMethod xgbTreeMethod
      Tree building algorithm.
    • xgbEnsembleSize

      @Option(longName="xgb-ensemble-size", usage="Number of trees in the ensemble.") public int xgbEnsembleSize
      Number of trees in the ensemble.
    • xbgAlpha

      @Option(longName="xgb-alpha", usage="L1 regularization term for weights.") public float xbgAlpha
      L1 regularization term for weights.
    • xgbMinWeight

      @Option(longName="xgb-min-weight", usage="Minimum sum of instance weights needed in a leaf (range [0,Infinity]).") public float xgbMinWeight
      Minimum sum of instance weights needed in a leaf (range [0,Infinity]).
    • xgbMaxDepth

      @Option(longName="xgb-max-depth", usage="Max tree depth (range (0,Integer.MAX_VALUE]).") public int xgbMaxDepth
      Max tree depth (range (0,Integer.MAX_VALUE]).
    • xgbEta

      @Option(longName="xgb-eta", usage="Step size shrinkage parameter (range [0,1]).") public float xgbEta
      Step size shrinkage parameter (range [0,1]).
    • xgbSubsampleFeatures

      @Option(longName="xgb-subsample-features", usage="Subsample features for each tree (range (0,1]).") public float xgbSubsampleFeatures
      Subsample features for each tree (range (0,1]).
    • xgbGamma

      @Option(longName="xgb-gamma", usage="Minimum loss reduction to make a split (range [0,Infinity]).") public float xgbGamma
      Minimum loss reduction to make a split (range [0,Infinity]).
    • xgbLambda

      @Option(longName="xgb-lambda", usage="L2 regularization term for weights.") public float xgbLambda
      L2 regularization term for weights.
    • xgbQuiet

      @Option(longName="xgb-quiet", usage="Deprecated, use xgb-loglevel.") public boolean xgbQuiet
      Deprecated, use xgb-loglevel.
    • xgbLogLevel

      @Option(longName="xgb-loglevel", usage="Make the XGBoost training procedure quiet.") public XGBoostTrainer.LoggingVerbosity xgbLogLevel
      Make the XGBoost training procedure quiet.
    • xgbSubsample

      @Option(longName="xgb-subsample", usage="Subsample size for each tree (range (0,1]).") public float xgbSubsample
      Subsample size for each tree (range (0,1]).
    • xgbNumThreads

      @Option(longName="xgb-num-threads", usage="Number of threads to use (range (1, num hw threads)). The default of 0 means use all hw threads.") public int xgbNumThreads
      Number of threads to use (range (1, num hw threads)). The default of 0 means use all hw threads.
  • Constructor Details

    • XGBoostOptions

      public XGBoostOptions()
  • Method Details