Class KernelSVMOptions
java.lang.Object
org.tribuo.classification.sgd.kernel.KernelSVMOptions
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Options
,ClassificationOptions<KernelSVMTrainer>
Options for using the KernelSVMTrainer.
See:
Shalev-Shwartz S, Singer Y, Srebro N, Cotter A "Pegasos: Primal Estimated Sub-Gradient Solver for SVM" Mathematical Programming, 2011.
-
Nested Class Summary
-
Field Summary
Modifier and TypeFieldDescriptiondouble
Degree in polynomial kernel function.int
Number of SGD epochs.double
Gamma value in kernel function.double
Intercept in kernel function.Kernel function.double
Lambda value in gradient optimisation.int
Log the objective after n examples.long
Sets the random seed for the Kernel SVM.Fields inherited from interface com.oracle.labs.mlrg.olcut.config.Options
header
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionConstructs the trainer based on the provided arguments.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Options
getOptionsDescription
-
Field Details
-
kernelIntercept
@Option(longName="kernel-intercept", usage="Intercept in kernel function. Defaults to 1.0.") public double kernelInterceptIntercept in kernel function. Defaults to 1.0. -
kernelDegree
@Option(longName="kernel-degree", usage="Degree in polynomial kernel function. Defaults to 1.0.") public double kernelDegreeDegree in polynomial kernel function. Defaults to 1.0. -
kernelGamma
@Option(longName="kernel-gamma", usage="Gamma value in kernel function. Defaults to 1.0.") public double kernelGammaGamma value in kernel function. Defaults to 1.0. -
kernelEpochs
@Option(longName="kernel-epochs", usage="Number of SGD epochs. Defaults to 5.") public int kernelEpochsNumber of SGD epochs. Defaults to 5. -
kernelKernel
@Option(longName="kernel-kernel", usage="Kernel function. Defaults to LINEAR.") public KernelSVMOptions.KernelEnum kernelKernelKernel function. Defaults to LINEAR. -
kernelLambda
@Option(longName="kernel-lambda", usage="Lambda value in gradient optimisation. Defaults to 0.01.") public double kernelLambdaLambda value in gradient optimisation. Defaults to 0.01. -
kernelLoggingInterval
@Option(longName="kernel-logging-interval", usage="Log the objective after <int> examples. Defaults to 100.") public int kernelLoggingIntervalLog the objective after n examples. Defaults to 100. -
kernelSeed
@Option(longName="kernel-seed", usage="Sets the random seed for the Kernel SVM.") public long kernelSeedSets the random seed for the Kernel SVM.
-
-
Constructor Details
-
KernelSVMOptions
public KernelSVMOptions()
-
-
Method Details
-
getTrainer
Description copied from interface:ClassificationOptions
Constructs the trainer based on the provided arguments.- Specified by:
getTrainer
in interfaceClassificationOptions<KernelSVMTrainer>
- Returns:
- The trainer.
-