public class XGBoostOptions extends Object implements ClassificationOptions<XGBoostClassificationTrainer>
Modifier and Type | Field and Description |
---|---|
float |
xbgAlpha |
XGBoostTrainer.BoosterType |
xgbBoosterType |
int |
xgbEnsembleSize |
float |
xgbEta |
float |
xgbGamma |
float |
xgbLambda |
XGBoostTrainer.LoggingVerbosity |
xgbLogLevel |
int |
xgbMaxDepth |
float |
xgbMinWeight |
int |
xgbNumThreads |
boolean |
xgbQuiet |
float |
xgbSubsample |
float |
xgbSubsampleFeatures |
XGBoostTrainer.TreeMethod |
xgbTreeMethod |
Constructor and Description |
---|
XGBoostOptions() |
Modifier and Type | Method and Description |
---|---|
XGBoostClassificationTrainer |
getTrainer()
Constructs the trainer based on the provided arguments.
|
@Option(longName="xgb-booster-type", usage="Weak learning algorithm.") public XGBoostTrainer.BoosterType xgbBoosterType
@Option(longName="xgb-tree-method", usage="Tree building algorithm.") public XGBoostTrainer.TreeMethod xgbTreeMethod
@Option(longName="xgb-ensemble-size", usage="Number of trees in the ensemble.") public int xgbEnsembleSize
@Option(longName="xgb-alpha", usage="L1 regularization term for weights.") public float xbgAlpha
@Option(longName="xgb-min-weight", usage="Minimum sum of instance weights needed in a leaf (range [0,Infinity]).") public float xgbMinWeight
@Option(longName="xgb-max-depth", usage="Max tree depth (range (0,Integer.MAX_VALUE]).") public int xgbMaxDepth
@Option(longName="xgb-eta", usage="Step size shrinkage parameter (range [0,1]).") public float xgbEta
@Option(longName="xgb-subsample-features", usage="Subsample features for each tree (range (0,1]).") public float xgbSubsampleFeatures
@Option(longName="xgb-gamma", usage="Minimum loss reduction to make a split (range [0,Infinity]).") public float xgbGamma
@Option(longName="xgb-lambda", usage="L2 regularization term for weights.") public float xgbLambda
@Option(longName="xgb-quiet", usage="Deprecated, use xgb-loglevel.") public boolean xgbQuiet
@Option(longName="xgb-loglevel", usage="Make the XGBoost training procedure quiet.") public XGBoostTrainer.LoggingVerbosity xgbLogLevel
@Option(longName="xgb-subsample", usage="Subsample size for each tree (range (0,1]).") public float xgbSubsample
@Option(longName="xgb-num-threads", usage="Number of threads to use (range (1, num hw threads)). The default of 0 means use all hw threads.") public int xgbNumThreads
public XGBoostClassificationTrainer getTrainer()
ClassificationOptions
getTrainer
in interface ClassificationOptions<XGBoostClassificationTrainer>
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.