Package | Description |
---|---|
org.tribuo.classification.evaluation |
Evaluation classes for multi-class classification.
|
org.tribuo.classification.sequence |
Provides infrastructure for
SequenceModel s which
emit Label s at each step of the sequence. |
org.tribuo.multilabel.evaluation |
Evaluation classes for multi-label classification using
MultiLabel . |
Modifier and Type | Class and Description |
---|---|
class |
LabelConfusionMatrix
A confusion matrix for
Label s. |
Modifier and Type | Method and Description |
---|---|
ConfusionMatrix<Label> |
LabelMetric.Context.getCM() |
ConfusionMatrix<T> |
ClassifierEvaluation.getConfusionMatrix()
Returns the underlying confusion matrix.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Classifiable<T>> |
ConfusionMetrics.accuracy(EvaluationMetric.Average average,
ConfusionMatrix<T> cm)
Calculates the accuracy using the specified average type and confusion matrix.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.accuracy(MetricTarget<T> target,
ConfusionMatrix<T> cm)
Calculates the accuracy given this confusion matrix.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.accuracy(T label,
ConfusionMatrix<T> cm)
Calculates a per label accuracy given this confusion matrix.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.balancedErrorRate(ConfusionMatrix<T> cm)
Calculates the balanced error rate, i.e., the mean of the recalls.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.f1(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Computes the F_1 score.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.fn(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Returns the number of false negatives, possibly averaged depending on the metric target.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.fp(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Returns the number of false positives, possibly averaged depending on the metric target.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.fscore(MetricTarget<T> tgt,
ConfusionMatrix<T> cm,
double beta)
Computes the Fscore.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.precision(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Calculates the precision for this metric target.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.recall(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Calculates the recall for this metric target.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.tn(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Returns the number of true negatives, possibly averaged depending on the metric target.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.tp(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Returns the number of true positives, possibly averaged depending on the metric target.
|
Modifier and Type | Method and Description |
---|---|
ConfusionMatrix<Label> |
LabelSequenceEvaluation.getConfusionMatrix()
Gets the confusion matrix backing this evaluation.
|
Modifier and Type | Class and Description |
---|---|
class |
MultiLabelConfusionMatrix
A
ConfusionMatrix which accepts MultiLabel s. |
Modifier and Type | Method and Description |
---|---|
ConfusionMatrix<MultiLabel> |
MultiLabelEvaluationImpl.getConfusionMatrix() |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.