Package | Description |
---|---|
org.tribuo.classification |
Provides classes and infrastructure for multiclass classification problems.
|
org.tribuo.classification.evaluation |
Evaluation classes for multi-class classification.
|
org.tribuo.multilabel |
Provides classes and infrastructure for working with multi-label classification problems.
|
Modifier and Type | Interface and Description |
---|---|
interface |
Classifiable<T extends Classifiable<T>>
A tag interface for multi-class and multi-label classification tasks.
|
Modifier and Type | Class and Description |
---|---|
class |
Label
An immutable multi-class classification label.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ClassifierEvaluation<T extends Classifiable<T>>
Defines methods that calculate classification performance, used for both multi-class and multi-label classification.
|
interface |
ConfusionMatrix<T extends Classifiable<T>>
A confusion matrix for
Classifiable s. |
Modifier and Type | Method and Description |
---|---|
static <T extends Classifiable<T>> |
ConfusionMetrics.accuracy(EvaluationMetric.Average average,
ConfusionMatrix<T> cm)
Calculates the accuracy using the specified average type and confusion matrix.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.accuracy(MetricTarget<T> target,
ConfusionMatrix<T> cm)
Calculates the accuracy given this confusion matrix.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.accuracy(T label,
ConfusionMatrix<T> cm)
Calculates a per label accuracy given this confusion matrix.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.balancedErrorRate(ConfusionMatrix<T> cm)
Calculates the balanced error rate, i.e., the mean of the recalls.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.f1(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Computes the F_1 score.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.fn(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Returns the number of false negatives, possibly averaged depending on the metric target.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.fp(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Returns the number of false positives, possibly averaged depending on the metric target.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.fscore(MetricTarget<T> tgt,
ConfusionMatrix<T> cm,
double beta)
Computes the Fscore.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.precision(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Calculates the precision for this metric target.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.recall(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Calculates the recall for this metric target.
|
static <T extends Classifiable<T>> |
ConfusionMatrix.sumOverOutputs(ImmutableOutputInfo<T> domain,
ToDoubleFunction<T> getter)
Sums the supplied getter over the domain.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.tn(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Returns the number of true negatives, possibly averaged depending on the metric target.
|
static <T extends Classifiable<T>> |
ConfusionMetrics.tp(MetricTarget<T> tgt,
ConfusionMatrix<T> cm)
Returns the number of true positives, possibly averaged depending on the metric target.
|
Modifier and Type | Class and Description |
---|---|
class |
MultiLabel
A class for multi-label classification.
|
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.