Uses of Class
org.tribuo.sequence.SequenceDataset
Package
Description
Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any
Label
based classification model.Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides an interface for working with TensorFlow sequence models, using Tribuo's
SequenceModel
abstraction.Provides Tribuo specific infrastructure for the
Provenance
system which
tracks models and datasets.Provides core classes for working with sequences of
Example
s.-
Uses of SequenceDataset in org.tribuo.classification.sequence.viterbi
Modifier and TypeMethodDescriptionList<List<Prediction<Label>>>
ViterbiModel.predict
(SequenceDataset<Label> examples) ViterbiTrainer.train
(SequenceDataset<Label> dataset, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) The viterbi train method is unique because it delegates to a regularModel
train method, but before it does, it adds features derived from preceding labels. -
Uses of SequenceDataset in org.tribuo.classification.sgd.crf
-
Uses of SequenceDataset in org.tribuo.interop.tensorflow.sequence
Modifier and TypeMethodDescriptionprotected void
TensorFlowSequenceTrainer.preTrainingHook
(org.tensorflow.Session session, SequenceDataset<T> examples) A hook for modifying the session state before training starts.TensorFlowSequenceTrainer.train
(SequenceDataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) -
Uses of SequenceDataset in org.tribuo.provenance
ModifierConstructorDescriptionDatasetProvenance
(DataProvenance sourceProvenance, com.oracle.labs.mlrg.olcut.provenance.ListProvenance<com.oracle.labs.mlrg.olcut.provenance.ObjectProvenance> transformationProvenance, SequenceDataset<T> dataset) Creates a dataset provenance from the supplied sequence dataset. -
Uses of SequenceDataset in org.tribuo.sequence
Modifier and TypeClassDescriptionclass
ImmutableSequenceDataset<T extends Output<T>>
This is aSequenceDataset
which has anImmutableFeatureMap
to store the feature information.class
MinimumCardinalitySequenceDataset<T extends Output<T>>
This class creates a pruned dataset in which low frequency features that occur less than the provided minimum cardinality have been removed.class
MutableSequenceDataset<T extends Output<T>>
A MutableSequenceDataset is aSequenceDataset
with aMutableFeatureMap
which grows over time.Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
SequenceDataset<T>SequenceDataset.castDataset
(SequenceDataset<?> inputDataset, Class<T> outputType) Casts the dataset to the specified output type, assuming it is valid.static SequenceDataset<?>
SequenceDataset.deserialize
(org.tribuo.protos.core.SequenceDatasetProto sequenceProto) Deserializes a sequence dataset proto into a sequence dataset.static SequenceDataset<?>
SequenceDataset.deserializeFromFile
(Path path) Reads an instance ofSequenceDatasetProto
from the supplied path and deserializes it.static SequenceDataset<?>
SequenceDataset.deserializeFromStream
(InputStream is) Reads an instance ofSequenceDatasetProto
from the supplied input stream and deserializes it.Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
SequenceDataset<T>SequenceDataset.castDataset
(SequenceDataset<?> inputDataset, Class<T> outputType) Casts the dataset to the specified output type, assuming it is valid.static <T extends Output<T>>
ImmutableSequenceDataset<T>ImmutableSequenceDataset.copyDataset
(SequenceDataset<T> dataset) Creates an immutable deep copy of the supplied dataset.static <T extends Output<T>>
ImmutableSequenceDataset<T>ImmutableSequenceDataset.copyDataset
(SequenceDataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo) Creates an immutable deep copy of the supplied dataset, using a different feature and output map.static <T extends Output<T>>
ImmutableSequenceDataset<T>ImmutableSequenceDataset.copyDataset
(SequenceDataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, Merger merger) Creates an immutable deep copy of the supplied dataset.final E
AbstractSequenceEvaluator.evaluate
(SequenceModel<T> model, SequenceDataset<T> dataset) Produces an evaluation for the supplied model and dataset, by callingSequenceModel.predict(org.tribuo.sequence.SequenceExample<T>)
to create the predictions, then aggregating the appropriate statistics.SequenceEvaluator.evaluate
(SequenceModel<T> model, SequenceDataset<T> dataset) Evaluates the dataset using the supplied model, returning an immutable evaluation.List<List<Prediction<T>>>
SequenceModel.predict
(SequenceDataset<T> examples) Uses the model to predict the labels for multiple examples contained in a data set.HashingSequenceTrainer.train
(SequenceDataset<T> sequenceExamples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) This clones theSequenceDataset
, hashes each of the examples and rewrites their feature ids before passing it to the inner trainer.IndependentSequenceTrainer.train
(SequenceDataset<T> sequenceExamples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) default SequenceModel<T>
SequenceTrainer.train
(SequenceDataset<T> examples) Trains a sequence prediction model using the examples in the given data set.SequenceTrainer.train
(SequenceDataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a sequence prediction model using the examples in the given data set.ModifierConstructorDescriptionMinimumCardinalitySequenceDataset
(SequenceDataset<T> sequenceDataset, int minCardinality)