Uses of Class
org.tribuo.math.la.DenseMatrix
Packages that use DenseMatrix
Package
Description
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides the base classes for models trained with stochastic gradient descent.
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed
in Oracle Cloud Infrastructure Data Science.
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of
math related utils.
A package of statistical distributions.
Provides a linear algebra system used for numerical operations in Tribuo.
Provides some utility tensors for use in gradient optimisers.
-
Uses of DenseMatrix in org.tribuo.classification.sgd.crf
Fields in org.tribuo.classification.sgd.crf declared as DenseMatrixModifier and TypeFieldDescriptionfinal DenseMatrix
ChainHelper.ChainCliqueValues.transitionValues
The label-label transition matrix. -
Uses of DenseMatrix in org.tribuo.common.sgd
Methods in org.tribuo.common.sgd that return DenseMatrixModifier and TypeMethodDescriptionAbstractFMModel.getLinearWeightsCopy()
Returns a copy of the linear weights.AbstractLinearSGDModel.getWeightsCopy()
Returns a copy of the weights. -
Uses of DenseMatrix in org.tribuo.interop.oci
Methods in org.tribuo.interop.oci that return DenseMatrixModifier and TypeMethodDescriptionprotected DenseMatrix
OCIModel.convertFeatures
(SparseVector sparseVector) protected DenseMatrix
OCIModel.convertFeaturesList
(List<SparseVector> list) protected DenseMatrix
OCIModel.externalPrediction
(DenseMatrix features) Methods in org.tribuo.interop.oci with parameters of type DenseMatrixModifier and TypeMethodDescriptionOCILabelConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<Label>> examples, ImmutableOutputInfo<Label> outputIDInfo) protected List<Prediction<T>>
OCIModel.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<T>> list) protected Prediction<T>
OCIModel.convertOutput
(DenseMatrix scores, int numValidFeature, Example<T> example) OCIMultiLabelConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<MultiLabel>> examples, ImmutableOutputInfo<MultiLabel> outputIDInfo) List<Prediction<T>>
OCIOutputConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<T>> examples, ImmutableOutputInfo<T> outputIDInfo) Converts a dense matrix into a list of predictions of the appropriate type.OCIRegressorConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<Regressor>> examples, ImmutableOutputInfo<Regressor> outputIDInfo) protected DenseMatrix
OCIModel.externalPrediction
(DenseMatrix features) -
Uses of DenseMatrix in org.tribuo.math
Methods in org.tribuo.math that return DenseMatrixConstructors in org.tribuo.math with parameters of type DenseMatrixModifierConstructorDescriptionLinearParameters
(DenseMatrix weightMatrix) Constructs a LinearParameters wrapped around a weight matrix. -
Uses of DenseMatrix in org.tribuo.math.distributions
Constructors in org.tribuo.math.distributions with parameters of type DenseMatrixModifierConstructorDescriptionMultivariateNormalDistribution
(DenseVector means, DenseMatrix covariance, long seed) Constructs a multivariate normal distribution that can be sampled from.MultivariateNormalDistribution
(DenseVector means, DenseMatrix covariance, long seed, boolean eigenDecomposition) Constructs a multivariate normal distribution that can be sampled from. -
Uses of DenseMatrix in org.tribuo.math.la
Methods in org.tribuo.math.la that return DenseMatrixModifier and TypeMethodDescriptionDenseMatrix.copy()
Copies the matrix.static DenseMatrix
DenseMatrix.createDenseMatrix
(double[][] values) Defensively copies the values before construction.static DenseMatrix
DenseMatrix.createDenseMatrix
(SGDVector[] vectors) Constructs a new DenseMatrix copying the values from the supplied vectors.static DenseMatrix
DenseMatrix.deserializeFromProto
(int version, String className, com.google.protobuf.Any message) Deserialization factory.DenseMatrix.EigenDecomposition.eigenvectors()
The eigenvectors for each eigenvalue, stored in the columns of the matrix.DenseMatrix.EigenDecomposition.householderMatrix()
The Householder matrix produced during the tridiagonalisation.DenseMatrix.CholeskyFactorization.lMatrix()
The lower triangular factorized matrix.DenseMatrix.LUFactorization.lower()
The lower triangular matrix, with ones on the diagonal.DenseMatrix.matrixMultiply
(Matrix other) DenseMatrix.matrixMultiply
(Matrix other, boolean transposeThis, boolean transposeOther) DenseSparseMatrix.matrixMultiply
(Matrix other) DenseSparseMatrix.matrixMultiply
(Matrix other, boolean transposeThis, boolean transposeOther) DenseMatrix.selectColumns
(int[] columnIndices) Returns a new DenseMatrix containing a copy of the selected columns.DenseMatrix.selectColumns
(List<Integer> columnIndices) Returns a new DenseMatrix containing a copy of the selected columns.Solves the system A * X = B, where B is the input matrix, and A is the matrix which produced this Cholesky factorization.Solves the system A * X = Y, where Y is the input matrix, and A is the matrix which produced this eigen decomposition.Solves the system A * X = Y, where Y is the input matrix, and A is the matrix which produced this LU factorization.DenseMatrix.transpose()
Returns a transposed copy of this matrix.protected static DenseMatrix
DenseMatrix.unpackProto
(org.tribuo.math.protos.DenseTensorProto proto) Unpacks aDenseTensorProto
into aDenseMatrix
.DenseMatrix.LUFactorization.upper()
The upper triangular matrix.Constructors in org.tribuo.math.la with parameters of type DenseMatrix -
Uses of DenseMatrix in org.tribuo.math.optimisers.util
Subclasses of DenseMatrix in org.tribuo.math.optimisers.utilModifier and TypeClassDescriptionclass
A subclass ofDenseMatrix
which shrinks the value every time a new value is added.Methods in org.tribuo.math.optimisers.util that return DenseMatrixConstructors in org.tribuo.math.optimisers.util with parameters of type DenseMatrixModifierConstructorDescriptionShrinkingMatrix
(DenseMatrix v, double baseRate, boolean scaleShrinking) Constructs a shrinking matrix copy of the supplied dense matrix.ShrinkingMatrix
(DenseMatrix v, double baseRate, double lambda) Constructs a shrinking matrix copy of the supplied dense matrix.