Uses of Class
org.tribuo.ensemble.WeightedEnsembleModel
Package
Description
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
Provides a multi-label ensemble combiner that performs a (possibly
weighted) majority vote among each label independently, along with an
implementation of classifier chain ensembles.
-
Uses of WeightedEnsembleModel in org.tribuo.ensemble
Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
WeightedEnsembleModel<T>WeightedEnsembleModel.createEnsembleFromExistingModels
(String name, List<Model<T>> models, EnsembleCombiner<T> combiner) Creates an ensemble from existing models.static <T extends Output<T>>
WeightedEnsembleModel<T>WeightedEnsembleModel.createEnsembleFromExistingModels
(String name, List<Model<T>> models, EnsembleCombiner<T> combiner, float[] weights) Creates an ensemble from existing models.static WeightedEnsembleModel<?>
WeightedEnsembleModel.deserializeFromProto
(int version, String className, com.google.protobuf.Any message) Deserialization factory. -
Uses of WeightedEnsembleModel in org.tribuo.multilabel.ensemble
Modifier and TypeMethodDescriptionCCEnsembleTrainer.train
(Dataset<MultiLabel> examples) CCEnsembleTrainer.train
(Dataset<MultiLabel> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) CCEnsembleTrainer.train
(Dataset<MultiLabel> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount)