Uses of Class
org.tribuo.common.sgd.AbstractSGDModel
Package
Description
Provides an implementation of a classification factorization machine using Stochastic Gradient Descent.
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
Provides the base classes for models trained with stochastic gradient descent.
Provides an implementation of a multi-label classification factorization machine model using Stochastic Gradient Descent.
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
Provides an implementation of factorization machines for regression using Stochastic Gradient Descent.
Provides an implementation of linear regression using Stochastic Gradient Descent.
-
Uses of AbstractSGDModel in org.tribuo.classification.sgd.fm
Modifier and TypeClassDescriptionclass
The inference time version of a factorization machine trained using SGD. -
Uses of AbstractSGDModel in org.tribuo.classification.sgd.linear
Modifier and TypeClassDescriptionclass
The inference time version of a linear model trained using SGD. -
Uses of AbstractSGDModel in org.tribuo.common.sgd
Modifier and TypeClassDescriptionclass
AbstractFMModel<T extends Output<T>>
A quadratic factorization machine model trained using SGD.class
AbstractLinearSGDModel<T extends Output<T>>
A linear model trained using SGD. -
Uses of AbstractSGDModel in org.tribuo.multilabel.sgd.fm
Modifier and TypeClassDescriptionclass
The inference time version of a multi-label factorization machine trained using SGD. -
Uses of AbstractSGDModel in org.tribuo.multilabel.sgd.linear
Modifier and TypeClassDescriptionclass
The inference time version of a multi-label linear model trained using SGD. -
Uses of AbstractSGDModel in org.tribuo.regression.sgd.fm
Modifier and TypeClassDescriptionclass
The inference time model of a regression factorization machine trained using SGD. -
Uses of AbstractSGDModel in org.tribuo.regression.sgd.linear
Modifier and TypeClassDescriptionclass
The inference time version of a linear model trained using SGD.