Uses of Interface
org.tribuo.classification.sgd.LabelObjective
Package
Description
Provides an implementation of a classification factorization machine using Stochastic Gradient Descent.
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
Provides classification loss functions for Stochastic Gradient Descent.
-
Uses of LabelObjective in org.tribuo.classification.sgd.fm
Modifier and TypeMethodDescriptionFMClassificationOptions.getLoss()
Returns the loss function specified in the arguments.ModifierConstructorDescriptionFMClassificationTrainer
(LabelObjective objective, StochasticGradientOptimiser optimiser, int epochs, int loggingInterval, int minibatchSize, long seed, int factorizedDimSize, double variance) Constructs an SGD trainer for a factorization machine.FMClassificationTrainer
(LabelObjective objective, StochasticGradientOptimiser optimiser, int epochs, int loggingInterval, long seed, int factorizedDimSize, double variance) Constructs an SGD trainer for a factorization machine.FMClassificationTrainer
(LabelObjective objective, StochasticGradientOptimiser optimiser, int epochs, long seed, int factorizedDimSize, double variance) Constructs an SGD trainer for a factorization machine. -
Uses of LabelObjective in org.tribuo.classification.sgd.linear
Modifier and TypeMethodDescriptionLinearSGDOptions.getLoss()
Returns the loss function specified in the arguments.ModifierConstructorDescriptionLinearSGDTrainer
(LabelObjective objective, StochasticGradientOptimiser optimiser, int epochs, int loggingInterval, int minibatchSize, long seed) Constructs an SGD trainer for a linear model.LinearSGDTrainer
(LabelObjective objective, StochasticGradientOptimiser optimiser, int epochs, int loggingInterval, long seed) Constructs an SGD trainer for a linear model.LinearSGDTrainer
(LabelObjective objective, StochasticGradientOptimiser optimiser, int epochs, long seed) Constructs an SGD trainer for a linear model. -
Uses of LabelObjective in org.tribuo.classification.sgd.objectives
Modifier and TypeClassDescriptionclass
Hinge loss, scores the correct value margin and any incorrect predictions -margin.class
A multiclass version of the log loss.