Uses of Interface
org.tribuo.classification.Classifiable
Packages that use Classifiable
Package
Description
Provides classes and infrastructure for multiclass classification problems.
Evaluation classes for multi-class classification.
Provides classes and infrastructure for working with multi-label classification problems.
-
Uses of Classifiable in org.tribuo.classification
Classes in org.tribuo.classification with type parameters of type ClassifiableModifier and TypeInterfaceDescriptioninterfaceClassifiable<T extends Classifiable<T>>A tag interface for multi-class and multi-label classification tasks.Classes in org.tribuo.classification that implement ClassifiableModifier and TypeClassDescriptionfinal classAn immutable multi-class classification label. -
Uses of Classifiable in org.tribuo.classification.evaluation
Classes in org.tribuo.classification.evaluation with type parameters of type ClassifiableModifier and TypeInterfaceDescriptioninterfaceClassifierEvaluation<T extends Classifiable<T>>Defines methods that calculate classification performance, used for both multi-class and multi-label classification.interfaceConfusionMatrix<T extends Classifiable<T>>A confusion matrix forClassifiables.Methods in org.tribuo.classification.evaluation with type parameters of type ClassifiableModifier and TypeMethodDescriptionstatic <T extends Classifiable<T>>
doubleConfusionMetrics.accuracy(EvaluationMetric.Average average, ConfusionMatrix<T> cm) Calculates the accuracy using the specified average type and confusion matrix.static <T extends Classifiable<T>>
doubleConfusionMetrics.accuracy(MetricTarget<T> target, ConfusionMatrix<T> cm) Calculates the accuracy given this confusion matrix.static <T extends Classifiable<T>>
doubleConfusionMetrics.accuracy(T label, ConfusionMatrix<T> cm) Calculates a per label accuracy given this confusion matrix.static <T extends Classifiable<T>>
doubleConfusionMetrics.balancedErrorRate(ConfusionMatrix<T> cm) Calculates the balanced error rate, i.e., the mean of the recalls.static <T extends Classifiable<T>>
doubleConfusionMetrics.f1(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Computes the F_1 score.static <T extends Classifiable<T>>
doubleConfusionMetrics.fn(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of false negatives, possibly averaged depending on the metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.fp(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of false positives, possibly averaged depending on the metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.fscore(MetricTarget<T> tgt, ConfusionMatrix<T> cm, double beta) Computes the Fscore.static <T extends Classifiable<T>>
doubleConfusionMetrics.precision(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Calculates the precision for this metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.recall(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Calculates the recall for this metric target.static <T extends Classifiable<T>>
doubleConfusionMatrix.sumOverOutputs(ImmutableOutputInfo<T> domain, ToDoubleFunction<T> getter) Sums the supplied getter over the domain.static <T extends Classifiable<T>>
doubleConfusionMetrics.tn(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of true negatives, possibly averaged depending on the metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.tp(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of true positives, possibly averaged depending on the metric target. -
Uses of Classifiable in org.tribuo.multilabel
Classes in org.tribuo.multilabel that implement Classifiable