Uses of Interface
org.tribuo.classification.Classifiable
Package
Description
Provides classes and infrastructure for multiclass classification problems.
Evaluation classes for multi-class classification.
Provides classes and infrastructure for working with multi-label classification problems.
-
Uses of Classifiable in org.tribuo.classification
Modifier and TypeInterfaceDescriptioninterface
Classifiable<T extends Classifiable<T>>
A tag interface for multi-class and multi-label classification tasks.Modifier and TypeClassDescriptionfinal class
An immutable multi-class classification label. -
Uses of Classifiable in org.tribuo.classification.evaluation
Modifier and TypeInterfaceDescriptioninterface
ClassifierEvaluation<T extends Classifiable<T>>
Defines methods that calculate classification performance, used for both multi-class and multi-label classification.interface
ConfusionMatrix<T extends Classifiable<T>>
A confusion matrix forClassifiable
s.Modifier and TypeMethodDescriptionstatic <T extends Classifiable<T>>
doubleConfusionMetrics.accuracy
(EvaluationMetric.Average average, ConfusionMatrix<T> cm) Calculates the accuracy using the specified average type and confusion matrix.static <T extends Classifiable<T>>
doubleConfusionMetrics.accuracy
(MetricTarget<T> target, ConfusionMatrix<T> cm) Calculates the accuracy given this confusion matrix.static <T extends Classifiable<T>>
doubleConfusionMetrics.accuracy
(T label, ConfusionMatrix<T> cm) Calculates a per label accuracy given this confusion matrix.static <T extends Classifiable<T>>
doubleConfusionMetrics.balancedErrorRate
(ConfusionMatrix<T> cm) Calculates the balanced error rate, i.e., the mean of the recalls.static <T extends Classifiable<T>>
doubleConfusionMetrics.f1
(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Computes the F_1 score.static <T extends Classifiable<T>>
doubleConfusionMetrics.fn
(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of false negatives, possibly averaged depending on the metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.fp
(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of false positives, possibly averaged depending on the metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.fscore
(MetricTarget<T> tgt, ConfusionMatrix<T> cm, double beta) Computes the Fscore.static <T extends Classifiable<T>>
doubleConfusionMetrics.precision
(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Calculates the precision for this metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.recall
(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Calculates the recall for this metric target.static <T extends Classifiable<T>>
doubleConfusionMatrix.sumOverOutputs
(ImmutableOutputInfo<T> domain, ToDoubleFunction<T> getter) Sums the supplied getter over the domain.static <T extends Classifiable<T>>
doubleConfusionMetrics.tn
(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of true negatives, possibly averaged depending on the metric target.static <T extends Classifiable<T>>
doubleConfusionMetrics.tp
(MetricTarget<T> tgt, ConfusionMatrix<T> cm) Returns the number of true positives, possibly averaged depending on the metric target. -
Uses of Classifiable in org.tribuo.multilabel