See: Description
Package | Description |
---|---|
org.tribuo |
Provides the core interfaces and classes for using Tribuo.
|
org.tribuo.data |
Provides classes for loading in data from disk, processing it into examples, and splitting datasets for
things like cross-validation and train-test splits.
|
org.tribuo.data.columnar |
Provides classes for processing columnar data and generating
Example s. |
org.tribuo.data.columnar.extractors |
Provides implementations of
FieldExtractor . |
org.tribuo.data.columnar.processors.feature |
Provides implementations of
FeatureProcessor . |
org.tribuo.data.columnar.processors.field |
Provides implementations of
FieldProcessor . |
org.tribuo.data.columnar.processors.response |
Provides implementations of
ResponseProcessor . |
org.tribuo.data.csv |
Provides classes which can load columnar data (using a
RowProcessor )
from a CSV (or other character delimited format) file. |
org.tribuo.data.sql |
Provides classes which can load columnar data (using a
RowProcessor )
from a SQL source. |
org.tribuo.data.text | |
org.tribuo.data.text.impl |
Provides implementations of text data processors.
|
org.tribuo.dataset |
Provides utility datasets which subsample or otherwise
transform the wrapped dataset.
|
org.tribuo.datasource |
Simple data sources for ingesting or aggregating data.
|
org.tribuo.ensemble |
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
|
org.tribuo.evaluation |
Evaluation base classes, along with code for train/test splits and cross validation.
|
org.tribuo.evaluation.metrics |
This package contains the infrastructure classes for building evaluation metrics.
|
org.tribuo.hash |
Provides the base interface and implementations of the
Model hashing
which obscures the feature names stored in a model. |
org.tribuo.impl |
Provides implementations of base classes and interfaces from
org.tribuo . |
org.tribuo.json |
Provides interop with JSON formatted data, along with tools for interacting with JSON provenance objects.
|
org.tribuo.math |
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of
math related utils.
|
org.tribuo.math.kernel |
Provides a
Kernel interface for Mercer kernels, along with implementations of standard kernels. |
org.tribuo.math.la |
Provides a linear algebra system used for numerical operations in Tribuo.
|
org.tribuo.math.optimisers |
Provides implementations of
StochasticGradientOptimiser . |
org.tribuo.math.optimisers.util |
Provides some utility tensors for use in gradient optimisers.
|
org.tribuo.math.util |
Provides math related util classes.
|
org.tribuo.provenance |
Provides Tribuo specific infrastructure for the
Provenance system which
tracks models and datasets. |
org.tribuo.provenance.impl |
Provides internal implementations for empty provenance classes and TrainerProvenance.
|
org.tribuo.sequence |
Provides core classes for working with sequences of
Example s. |
org.tribuo.transform |
Provides infrastructure for applying transformations to a
Dataset . |
org.tribuo.transform.transformations |
Provides implementations of standard transformations like binning, scaling, taking logs and exponents.
|
org.tribuo.util |
Provides utilities which don't have other Tribuo dependencies.
|
Package | Description |
---|---|
org.tribuo.common.liblinear |
Provides base classes for using liblinear from Tribuo.
|
org.tribuo.common.libsvm |
The base interface to LibSVM.
|
org.tribuo.common.nearest |
Provides a K-Nearest Neighbours implementation which works across
all Tribuo
Output types. |
org.tribuo.common.sgd |
Provides the base classes for models trained with stochastic gradient descent.
|
org.tribuo.common.tree |
Provides common functionality for building decision trees, irrespective
of the predicted
Output . |
org.tribuo.common.tree.impl |
Provides internal implementation classes for building decision trees.
|
org.tribuo.common.xgboost |
Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts. |
Package | Description |
---|---|
org.tribuo.anomaly |
Provides classes and infrastructure for anomaly detection problems.
|
org.tribuo.anomaly.evaluation |
Evaluation classes for anomaly detection.
|
org.tribuo.anomaly.example |
Provides a anomaly data generator used for testing implementations.
|
org.tribuo.anomaly.liblinear |
Provides an interface to LibLinear-java for anomaly detection problems.
|
org.tribuo.anomaly.libsvm |
Provides an interface to LibSVM for anomaly detection problems.
|
Package | Description |
---|---|
org.tribuo.classification |
Provides classes and infrastructure for multiclass classification problems.
|
org.tribuo.classification.baseline |
Provides simple baseline multiclass classifiers.
|
org.tribuo.classification.dtree |
Provides implementations of decision trees for classification problems.
|
org.tribuo.classification.dtree.impl |
Provides internal implementation classes for classification decision trees.
|
org.tribuo.classification.dtree.impurity |
Provides classification impurity metrics for decision trees.
|
org.tribuo.classification.ensemble |
Provides majority vote ensemble combiners for classification
along with an implementation of multiclass Adaboost.
|
org.tribuo.classification.evaluation |
Evaluation classes for multi-class classification.
|
org.tribuo.classification.example |
Provides a multiclass data generator used for testing implementations.
|
org.tribuo.classification.experiments |
Provides a set of main methods for interacting with classification tasks.
|
org.tribuo.classification.explanations |
Provides core infrastructure for local model based explanations.
|
org.tribuo.classification.explanations.lime |
Provides an implementation of LIME (Locally Interpretable Model Explanations).
|
org.tribuo.classification.liblinear |
Provides an interface to LibLinear-java for classification problems.
|
org.tribuo.classification.libsvm |
Provides an interface to LibSVM for classification problems.
|
org.tribuo.classification.mnb |
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
|
org.tribuo.classification.sequence |
Provides infrastructure for
SequenceModel s which
emit Label s at each step of the sequence. |
org.tribuo.classification.sequence.example |
Provides a classification sequence data generator for smoke testing implementations.
|
org.tribuo.classification.sequence.viterbi |
Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any
Label based classification model. |
org.tribuo.classification.sgd |
Provides infrastructure for Stochastic Gradient Descent for classification problems.
|
org.tribuo.classification.sgd.crf |
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
|
org.tribuo.classification.sgd.kernel |
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
|
org.tribuo.classification.sgd.linear |
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
|
org.tribuo.classification.sgd.objectives |
Provides classification loss functions for Stochastic Gradient Descent.
|
org.tribuo.classification.xgboost |
Provides an interface to XGBoost for classification problems.
|
Package | Description |
---|---|
org.tribuo.clustering |
Provides classes and infrastructure for working with clustering problems.
|
org.tribuo.clustering.evaluation |
Evaluation classes for clustering.
|
org.tribuo.clustering.example |
Provides a clustering data generator used for testing implementations.
|
org.tribuo.clustering.kmeans |
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
|
Package | Description |
---|---|
org.tribuo.multilabel |
Provides classes and infrastructure for working with multi-label classification problems.
|
org.tribuo.multilabel.baseline | |
org.tribuo.multilabel.evaluation |
Evaluation classes for multi-label classification using
MultiLabel . |
org.tribuo.multilabel.example |
Provides a multi-label data generator for testing implementations.
|
org.tribuo.multilabel.sgd |
Provides infrastructure for Stochastic Gradient Descent for multi-label classification problems.
|
org.tribuo.multilabel.sgd.linear |
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
|
org.tribuo.multilabel.sgd.objectives |
Provides multi-label classification loss functions for Stochastic Gradient Descent.
|
Package | Description |
---|---|
org.tribuo.regression |
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
|
org.tribuo.regression.baseline |
Provides simple baseline regression predictors.
|
org.tribuo.regression.ensemble |
Provides
EnsembleCombiner implementations
for working with multi-output regression problems. |
org.tribuo.regression.evaluation |
Evaluation classes for single or multi-dimensional regression.
|
org.tribuo.regression.example |
Provides some example regression data generators for testing implementations.
|
org.tribuo.regression.impl | |
org.tribuo.regression.liblinear |
Provides an interface to liblinear for regression problems.
|
org.tribuo.regression.libsvm |
Provides an interface to LibSVM for regression problems.
|
org.tribuo.regression.rtree |
Provides an implementation of decision trees for regression problems.
|
org.tribuo.regression.rtree.impl |
Provides internal implementation classes for the regression trees.
|
org.tribuo.regression.rtree.impurity |
Provides implementations of regression tree impurity metrics.
|
org.tribuo.regression.sgd |
Provides infrastructure for Stochastic Gradient Descent based regression models.
|
org.tribuo.regression.sgd.linear |
Provides an implementation of linear regression using Stochastic Gradient Descent.
|
org.tribuo.regression.sgd.objectives |
Provides regression loss functions for Stochastic Gradient Descent.
|
org.tribuo.regression.slm |
Provides implementations of sparse linear regression using various forms of regularisation penalty.
|
org.tribuo.regression.xgboost |
Provides an interface to XGBoost for regression problems.
|
Package | Description |
---|---|
org.tribuo.interop |
This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
|
org.tribuo.interop.onnx |
This package contains a Tribuo wrapper around the ONNX Runtime.
|
org.tribuo.interop.onnx.extractors |
Provides feature extraction implementations which use ONNX models.
|
org.tribuo.interop.tensorflow |
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
|
org.tribuo.interop.tensorflow.example |
Example architectures for use with Tribuo's TF interface.
|
org.tribuo.interop.tensorflow.sequence |
Provides an interface for working with TensorFlow sequence models, using Tribuo's
SequenceModel abstraction. |
Package | Description |
---|---|
org.tribuo.tests |
This package provides helper classes for Tribuo's unit tests.
|
org.tribuo.util.infotheory |
This package provides static classes of information theoretic functions.
|
org.tribuo.util.infotheory.example |
This package provides demos for the information theoretic function
classes in
org.tribuo.util.infotheory . |
org.tribuo.util.infotheory.impl |
This package provides the implementations and helper classes for the
information theoretic functions in
org.tribuo.util.infotheory . |
org.tribuo.util.tokens |
Core definitions for tokenization.
|
org.tribuo.util.tokens.impl |
Simple fixed rule tokenizers.
|
org.tribuo.util.tokens.impl.wordpiece |
Provides an implementation of a Wordpiece tokenizer which implements
to the Tribuo
Tokenizer API. |
org.tribuo.util.tokens.options |
OLCUT
Options implementations
which can construct Tokenizer s of various types. |
org.tribuo.util.tokens.universal |
An implementation of a "universal" tokenizer which will split
on word boundaries or character boundaries for languages where
word boundaries are contextual.
|
org.tribuo
package. Task specific
types live in the root package of that task (e.g., org.tribuo.classification
). Tribuo is modular,
each package/module is scoped to have minimal dependencies, and there are few cross-cutting packages.
Tribuo's development is lead by Oracle Labs' Machine Learning Research
Group, the source is hosted on Github, and more documentation is
available on the project website tribuo.org.Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.