001/* 002 * Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved. 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package org.tribuo.regression.sgd.objectives; 018 019import com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance; 020import com.oracle.labs.mlrg.olcut.provenance.impl.ConfiguredObjectProvenanceImpl; 021import com.oracle.labs.mlrg.olcut.util.Pair; 022import org.tribuo.math.la.DenseVector; 023import org.tribuo.math.la.SGDVector; 024import org.tribuo.regression.sgd.RegressionObjective; 025 026/** 027 * Squared loss, i.e., l2. 028 */ 029public class SquaredLoss implements RegressionObjective { 030 031 @Override 032 public Pair<Double, SGDVector> loss(DenseVector truth, SGDVector prediction) { 033 DenseVector difference = truth.subtract(prediction); 034 double loss = difference.reduce(0.0,(a) -> 0.5*a*a,Double::sum); 035 return new Pair<>(loss,difference); 036 } 037 038 @Override 039 public String toString() { 040 return "SquaredLoss"; 041 } 042 043 @Override 044 public ConfiguredObjectProvenance getProvenance() { 045 return new ConfiguredObjectProvenanceImpl(this,"RegressionObjective"); 046 } 047}