001/* 002 * Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved. 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package org.tribuo.multilabel.evaluation; 018 019import org.tribuo.classification.evaluation.ConfusionMetrics; 020import org.tribuo.evaluation.metrics.MetricTarget; 021import org.tribuo.multilabel.MultiLabel; 022 023import java.util.function.BiFunction; 024 025/** 026 * An enum of the default {@link MultiLabelMetric}s supported by the multi-label classification 027 * evaluation package. 028 */ 029public enum MultiLabelMetrics { 030 031 /** 032 * The number of true positives. 033 */ 034 TP((tgt, ctx) -> ConfusionMetrics.tp(tgt, ctx.getCM())), 035 /** 036 * The number of false positives. 037 */ 038 FP((tgt, ctx) -> ConfusionMetrics.fp(tgt, ctx.getCM())), 039 /** 040 * The number of true negatives. 041 */ 042 TN((tgt, ctx) -> ConfusionMetrics.tn(tgt, ctx.getCM())), 043 /** 044 * The number of false negatives. 045 */ 046 FN((tgt, ctx) -> ConfusionMetrics.fn(tgt, ctx.getCM())), 047 /** 048 * The precision, i.e., the number of true positives divided by the number of predicted positives. 049 */ 050 PRECISION((tgt, ctx) -> ConfusionMetrics.precision(tgt, ctx.getCM())), 051 /** 052 * The recall, i.e., the number of true positives divided by the number of ground truth positives. 053 */ 054 RECALL((tgt, ctx) -> ConfusionMetrics.recall(tgt, ctx.getCM())), 055 /** 056 * The F_1 score, i.e., the harmonic mean of the precision and the recall. 057 */ 058 F1((tgt, ctx) -> ConfusionMetrics.f1(tgt, ctx.getCM())), 059 /** 060 * The balanced error rate, i.e., the mean of the per class recalls. 061 */ 062 BALANCED_ERROR_RATE((tgt, ctx) -> ConfusionMetrics.balancedErrorRate(ctx.getCM())); 063 064 private final BiFunction<MetricTarget<MultiLabel>, MultiLabelMetric.Context, Double> impl; 065 066 MultiLabelMetrics(BiFunction<MetricTarget<MultiLabel>, MultiLabelMetric.Context, Double> impl) { 067 this.impl = impl; 068 } 069 070 public BiFunction<MetricTarget<MultiLabel>, MultiLabelMetric.Context, Double> getImpl() { 071 return impl; 072 } 073 074 public MultiLabelMetric forTarget(MetricTarget<MultiLabel> tgt) { 075 return new MultiLabelMetric(tgt, this.name(), this.getImpl()); 076 } 077}