001/* 002 * Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved. 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package org.tribuo.clustering.kmeans; 018 019import com.oracle.labs.mlrg.olcut.config.Option; 020import com.oracle.labs.mlrg.olcut.config.Options; 021import org.tribuo.Trainer; 022import org.tribuo.clustering.kmeans.KMeansTrainer.Distance; 023 024import java.util.logging.Logger; 025 026/** 027 * OLCUT {@link Options} for the K-Means implementation. 028 */ 029public class KMeansOptions implements Options { 030 private static final Logger logger = Logger.getLogger(KMeansOptions.class.getName()); 031 032 @Option(longName="kmeans-interations",usage="Iterations of the k-means algorithm. Defaults to 10.") 033 public int iterations = 10; 034 @Option(longName="kmeans-num-centroids",usage="Number of centroids in K-Means. Defaults to 10.") 035 public int centroids = 10; 036 @Option(longName="kmeans-distance",usage="Distance function in K-Means. Defaults to EUCLIDEAN.") 037 public Distance distance = Distance.EUCLIDEAN; 038 @Option(longName="kmeans-num-threads",usage="Number of computation threads in K-Means. Defaults to 4.") 039 public int numThreads = 4; 040 @Option(longName="kmeans-seed", usage = "Sets the random seed for K-Means.") 041 private long seed = Trainer.DEFAULT_SEED; 042 043 public KMeansTrainer getTrainer() { 044 logger.info("Configuring K-Means Trainer"); 045 //public KMeansTrainer(int centroids, int iterations, Distance distanceType, int numThreads, int seed) { 046 return new KMeansTrainer(centroids,iterations,distance,numThreads,seed); 047 } 048}