001/* 002 * Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved. 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package org.tribuo.clustering.evaluation; 018 019import org.tribuo.Model; 020import org.tribuo.Prediction; 021import org.tribuo.clustering.ClusterID; 022import org.tribuo.evaluation.AbstractEvaluator; 023import org.tribuo.evaluation.Evaluator; 024import org.tribuo.evaluation.metrics.EvaluationMetric.Average; 025import org.tribuo.evaluation.metrics.MetricID; 026import org.tribuo.evaluation.metrics.MetricTarget; 027import org.tribuo.provenance.EvaluationProvenance; 028 029import java.util.HashSet; 030import java.util.List; 031import java.util.Map; 032import java.util.Set; 033 034/** 035 * A {@link Evaluator} for clustering using {@link ClusterID}s. 036 * <p> 037 * If the dataset contains an unassigned cluster id (as generated by {@link org.tribuo.clustering.ClusteringFactory#getUnknownOutput()}) 038 * then the evaluate methods will throw {@link IllegalArgumentException} with an appropriate message. 039 */ 040public class ClusteringEvaluator extends AbstractEvaluator<ClusterID, ClusteringMetric.Context, ClusteringEvaluation, ClusteringMetric> { 041 042 @Override 043 protected Set<ClusteringMetric> createMetrics(Model<ClusterID> model) { 044 Set<ClusteringMetric> metrics = new HashSet<>(); 045 046 // Just using Average.micro here arbitrarily, NMI/AMI don't actually need targets 047 MetricTarget<ClusterID> target = new MetricTarget<>(Average.MICRO); 048 metrics.add(ClusteringMetrics.NORMALIZED_MI.forTarget(target)); 049 metrics.add(ClusteringMetrics.ADJUSTED_MI.forTarget(target)); 050 051 return metrics; 052 } 053 054 @Override 055 protected ClusteringMetric.Context createContext(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) { 056 return new ClusteringMetric.Context(model, predictions); 057 } 058 059 @Override 060 protected ClusteringEvaluation createEvaluation(ClusteringMetric.Context context, 061 Map<MetricID<ClusterID>, Double> results, 062 EvaluationProvenance provenance) { 063 return new ClusteringEvaluationImpl(results, context, provenance); 064 } 065}