001/* 002 * Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved. 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package org.tribuo.classification.sgd.objectives; 018 019import com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance; 020import com.oracle.labs.mlrg.olcut.provenance.impl.ConfiguredObjectProvenanceImpl; 021import com.oracle.labs.mlrg.olcut.util.Pair; 022import org.tribuo.classification.sgd.LabelObjective; 023import org.tribuo.math.la.SGDVector; 024import org.tribuo.math.util.ExpNormalizer; 025import org.tribuo.math.util.VectorNormalizer; 026 027/** 028 * A multiclass version of the log loss. 029 * <p> 030 * Generates a probabilistic model, and uses an {@link ExpNormalizer}. 031 */ 032public class LogMulticlass implements LabelObjective { 033 034 private final VectorNormalizer normalizer = new ExpNormalizer(); 035 036 /** 037 * Returns a {@link Pair} of {@link Double} and the supplied prediction vector. 038 * <p> 039 * The prediction vector is transformed to produce the per label gradient. 040 * @param truth The true label id 041 * @param prediction The prediction for each label id 042 * @return A Pair of the score and per label gradient. 043 */ 044 @Override 045 public Pair<Double,SGDVector> valueAndGradient(int truth, SGDVector prediction) { 046 prediction.normalize(normalizer); 047 double loss = Math.log(prediction.get(truth)); 048 prediction.scaleInPlace(-1.0); 049 prediction.add(truth,1.0); 050 return new Pair<>(loss,prediction); 051 } 052 053 @Override 054 public VectorNormalizer getNormalizer() { 055 return new ExpNormalizer(); 056 } 057 058 /** 059 * Returns true. 060 * @return True. 061 */ 062 @Override 063 public boolean isProbabilistic() { 064 return true; 065 } 066 067 @Override 068 public String toString() { 069 return "LogMulticlass"; 070 } 071 072 @Override 073 public ConfiguredObjectProvenance getProvenance() { 074 return new ConfiguredObjectProvenanceImpl(this,"LabelObjective"); 075 } 076}