001/* 002 * Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved. 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package org.tribuo.classification.explanations.lime; 018 019import org.tribuo.Model; 020import org.tribuo.Prediction; 021import org.tribuo.SparseModel; 022import org.tribuo.classification.Label; 023import org.tribuo.classification.explanations.Explanation; 024import org.tribuo.regression.Regressor; 025import org.tribuo.regression.evaluation.RegressionEvaluation; 026 027import java.util.List; 028 029/** 030 * An {@link Explanation} using LIME. 031 * <p> 032 * Wraps a {@link SparseModel} {@link Regressor} which is trained to predict the probabilities 033 * generated by the true {@link Model}. 034 * <p> 035 * See: 036 * <pre> 037 * Ribeiro MT, Singh S, Guestrin C. 038 * "Why should I trust you?: Explaining the predictions of any classifier" 039 * Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016. 040 * </pre> 041 */ 042public class LIMEExplanation implements Explanation<Regressor> { 043 private static final long serialVersionUID = 1L; 044 045 private final SparseModel<Regressor> model; 046 047 private final Prediction<Label> prediction; 048 049 private final RegressionEvaluation evaluation; 050 051 public LIMEExplanation(SparseModel<Regressor> model, Prediction<Label> prediction, RegressionEvaluation evaluation) { 052 this.model = model; 053 this.prediction = prediction; 054 this.evaluation = evaluation; 055 } 056 057 @Override 058 public List<String> getActiveFeatures() { 059 return model.getActiveFeatures().get(prediction.getOutput().getLabel()); 060 } 061 062 @Override 063 public SparseModel<Regressor> getModel() { 064 return model; 065 } 066 067 @Override 068 public Prediction<Label> getPrediction() { 069 return prediction; 070 } 071 072 /** 073 * Gets the evaluator which scores how close the sparse model's 074 * predictions are to the complex model's predictions. 075 * @return The evaluation. 076 */ 077 public RegressionEvaluation getEvaluation() { 078 return evaluation; 079 } 080 081 /** 082 * Get the RMSE of a specific dimension of the explanation model. 083 * @param name The dimension to look at. 084 * @return The RMSE of the explanation model. 085 */ 086 public double getRMSE(String name) { 087 return evaluation.rmse().get(new Regressor.DimensionTuple(name,Double.NaN)); 088 } 089 090 @Override 091 public String toString() { 092 return "LIMEExplanation(linearRMSE="+evaluation.rmse()+",modelPrediction="+prediction+",activeFeatures="+getActiveFeatures().toString()+")"; 093 } 094}